• Title/Summary/Keyword: lattice structures

Search Result 367, Processing Time 0.027 seconds

Color Tunable Nanostructures by Polarization Control for Display Applications

  • Cho, Eun-Byurl;Ko, Yeong-Il;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.567-567
    • /
    • 2013
  • Surface plasmon resonance is the enhancement of electromagnetic wave caused by oscillation on the metal and dielectric interfaces. Surface plasmons with nanohole arrays provides an enhancedresonance for the specific wavelengths of interests. Asymmetric array of nanoscale structures can enable orientation dependent shift of resonance wavelengths when combined with the control of polarization for incident visible light, thus providing color tunability. Appropriate lattice constants along the direction of polarization in rectangular nanohole arrays can determine the resonance condition generating red (R), green (G), and blue (B) colors and potentially be applied to display applications. In ourprevious report, we have optimized the ion beam nanomachining conditions to fabricate the nanostructures on the metal film. We apply the fabrication conditions to make nanoscale hole arrays using 100 nm thick gold layer on the glass substrate with the optimal design of periodicities along x, y, and diagonal directions of a=440 nm, b=520 nm, c=682 nm, and the hole diameter of d=200 nm. Using the reflective light in dark field mode of optical microscope, we can observe different colors. When the polarizer is paralleled along a, b, or c direction, the represented color is changed to R, G, and B, respectively. We further map the color using i1 to correlate the conditions of the nanohole arrays with their characteristic color.

  • PDF

Two-dimensional modelling of uniformly doped silicene with aluminium and its electronic properties

  • Chuan, M.W.;Wong, K.L.;Hamzah, A.;Rusli, S.;Alias, N.E.;Lim, C.S.;Tan, M.L.P.
    • Advances in nano research
    • /
    • v.9 no.2
    • /
    • pp.105-112
    • /
    • 2020
  • Silicene is a two-dimensional (2D) derivative of silicon (Si) arranged in honeycomb lattice. It is predicted to be compatible with the present fabrication technology. However, its gapless properties (neglecting the spin-orbiting effect) hinders its application as digital switching devices. Thus, a suitable band gap engineering technique is required. In the present work, the band structure and density of states of uniformly doped silicene are obtained using the nearest neighbour tight-binding (NNTB) model. The results show that uniform substitutional doping using aluminium (Al) has successfully induced band gap in silicene. The band structures of the presented model are in good agreement with published results in terms of the valence band and conduction band. The band gap values extracted from the presented models are 0.39 eV and 0.78 eV for uniformly doped silicene with Al at the doping concentration of 12.5% and 25% respectively. The results show that the engineered band gap values are within the range for electronic switching applications. The conclusions of this study envisage that the uniformly doped silicene with Al can be further explored and applied in the future nanoelectronic devices.

Development of a real time neutron Dosimeter using semiconductor (반도체형 실시간 전자적 선량계 개발)

  • Lee, Seung-Min;Lee, Heung-Ho;Lee, Nam-Ho;Kim, Seung-Ho;Yeo, Jin-Gi
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.754-757
    • /
    • 2000
  • Si PIN diodes are subject to be damaged from the exposure of fast neutron by displacement of Si lattice structure. The defects are effective recombination centers for carriers which migrate through the base region of the PIN diode when forward voltage is applied. It causes an increase in current and a decrease in resistivity of the diode. This paper presents the development of a neutron sensor based on displacement damage effect. PIN diodes having various structures were made by micro-fabrication process, and neutron beam test was performed to identify neutron damage effect to the diode. From a result of the test, it was shown that the forward voltage drop of the diode, at a constant current, has good linearity for neutron dosage. Also it was found that the newton dosage can be measured by the pin diode neutron dosimeter with constant current power.

  • PDF

Direct Printing and Patterning of Highly Uniform Graphene Nanosheets for Applications in Flexible Electronics

  • Gu, Ja-Hun;Lee, Tae-Yun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.39.2-39.2
    • /
    • 2011
  • With the steady increase in the demand for flexible devices, mainly in display panels, researchers have focused on finding a novel material that have excellent electrical properties even when it is bended or stretched, along with superior mechanical and thermal properties. Graphene, a single-layered two-dimensional carbon lattice, has recently attracted tremendous research interest in this respect. However, the limitations in the growing method of graphene, mainly chemical vapor deposition on transition metal catalysts, has posed severe problems in terms of device integration, due to the laborious transfer process that may damage and contaminate the graphene layer. In addition, to lower the overall cost, a fabrication technique that supports low temperature and low vacuum is required, which is the main reason why solution-based process for graphene layer deposition has become the hot issue. Nonetheless, a direct deposition method of large area, few-layered, and uniform graphene layers has not been reported yet, along with a convenient method of patterning them. Here, we report an evaporation-induced technique for directly depositing few layers of graphene nanosheets with excellent uniformity and thickness controllability on any substrate. The printed graphene nanosheets can be patterned into desired shapes and structures, which can be directly applicable as flexible and transparent electrode. To illustrate such potential, the transport properties and resistivity of the deposited graphene layers have been investigated according to their thickness. The induced internal flow of the graphene solution during tis evaporation allows uniform deposition with which its thickness, and thus resistivity can be tuned by controlling the composition ratio of the solute and solvent.

  • PDF

1D and 2D Cobalt(II) Coordination Polymers, Co(ox)(en): Synthesis, Structures and Magnetic Properties

  • Kang, Jaeun;Lee, Yumi;Kim, Seungjoo;Yun, Hoseop;Do, Junghwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3244-3248
    • /
    • 2014
  • Two ethylenediamine cobalt(II) oxalate complexes Co(ox)(en), 1 and $Co(ox)(en){\cdot}2H_2O$, 2 have been hydrothermally synthesized and characterized by single crystal X-ray diffraction, IR spectrum, TG analysis, and magnetic measurements. In 1, Co atoms are coordinated by two bis-bidentate oxalate ions in transconfiguration to form Co(ox) chains, which are further bridged by ethylenediamine molecules to produce 2D grid layers, Co(ox)(en). In 2, Co atoms are coordinated by bridging oxalate ions in cis-configuration to form Co(ox) chains, and the additional chelation of ethylenediamine to Co atoms completes 1D zigzag chain, Co(en)(ox). Two lattice water molecules stabilize the chains through hydrogen bonding. Magnetic susceptibility measurements indicate that both complexes exhibit weak antiferromagnetic coupling between cobalt(II) ions with the susceptibility maxima at 23 K for 1 and 20 K for 2, respectively. In 1 and 2, the oxalate ligands afford a much shorter and more effective pathway for the magnetic interaction between cobalt ions compared to the ethylenediamine ligands, so the magnetic behaviors of both complexes could be well described with 1D infinite magnetic chain model.

Influence of Intermolecular Interactions on the Structure of Copper Phthalocyanine Layers on Passivated Semiconductor Surfaces

  • Yim, Sang-Gyu;Jones, Tim S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2247-2254
    • /
    • 2010
  • The surface structures of copper phthalocyanine (CuPc) thin films deposited on sulphur-passivated and plane perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA)-covered InAs(100) surfaces have been studied by low energy electron diffraction (LEED) and van der Waals (vdW) intermolecular interaction energy calculations. The annealing to $300^{\circ}C$ and $450^{\circ}C$ of $(NH_4)_2S_x$-treated InAs(100) substrates produces a ($1{\times}1$) and ($2{\times}1$) S-passivated surface respectively. The CuPc deposition onto the PTCDA-covered InAs(100) surface leads to a ring-like diffraction pattern, indicating that the 2D ordered overlayer exists and the structure is dominantly determined by the intermolecular interactions rather than substrate-molecule interactions. However, no ordered LEED patterns were observed for the CuPc on S-passivated InAs(100) surface. The intermolecular interaction energy calculations have been carried out to rationalise this structural difference. In the case of CuPc unit cells on PTCDA layer, the planar layered CuPc structure is more stable than the $\alpha$-herringbone structure, consistent with the experimental LEED results. For CuPc unit cells on a S-($1{\times}1$) layer, however, the $\alpha$-herringbone structure is more stable than the planar layered structure, consistent with the absence of diffraction pattern. The results show that the lattice structure during the initial stages of thin film growth is influenced strongly by the intermolecular interactions at the interface.

Fabrication of Pair-Photonic Crystal Arrays using Multiple-Exposure Nanosphere Lithography (다중노광 나노구 리소그라피를 이용한 쌍-광자결정 어레이 제작)

  • Yeo, Jong-Bin;Han, Gwang-Min;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.3
    • /
    • pp.245-249
    • /
    • 2010
  • Two dimensional(2D) pair-photonic crystals (pair-PCs) have been fabricated by a multiple-exposure nanosphere lithography (MENSL) method using the self-assembled nanospheres as lens-mask patterns and the collimated laser beam as a multiple-exposing source. The arrays of the 2D pair-PCs exhibited variable lattice structures and shape the control of rotating angle (${\Theta}$), tilting angle (${\gamma}$) and the exposure conditions. In addition, the base period or filling factor of pair-PCs as well as their shapes could be changed by experimental conditions and nanosphere size. A 1.18-${\mu}m$-thick resist was spincoated on Si substrate and the multiple exposure was carried out at change of ${\gamma}$ and ${\Theta}$. Images of prepared 2D pair-PCs were observed by SEM. We believe that the MENSL method is a suitable useful tool to realize the pair-periodic arrays of large area.

Design of Fuzzy Adaptive IIR Filter in Direct Form (직접형 퍼지 적응 IIR 필터의 설계)

  • 유근택;배현덕
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.4
    • /
    • pp.370-378
    • /
    • 2002
  • Fuzzy inference which combines numerical data and linguistic data has been used to design adaptive filter algorithms. In adaptive IIR filter design, the fuzzy prefilter is taken account, and applied to both direct and lattice structure. As for the fuzzy inference of the fuzzy filter, the Sugeno's method is employed. As membership functions and inference rules are recursively generated through neural network, the accuracy can be improved. The proposed adaptive algorithm, adaptive IIR filter with fuzzy prefilter, has been applied to adaptive system identification for the purposed of performance test. The evaluations have been carried out with viewpoints of convergence property and tracking properties of the parameter estimation. As a result, the faster convergence and the better coefficients tracking performance than those of the conventional algorithm are shown in case of direct structures.

Kinetic Considerations on the Olivine Cathodes

  • Yamada Atsuo;Yonemura Masao;Takei Yuki;Sonoyama Noriyuki;Kanno Ryoji
    • 한국전기화학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.141-151
    • /
    • 2003
  • The electrochemical activity of the olivine type $LiMPO_4$ (M=transition metals) cathodes strongly depends on various factors, e.g., the transition metal element M, perturbative doping of the supervalent cations into Li site, composite formation with conductive additives, state of charge/discharge, and particle size and its geometries, etc. This is, therefore, an important issue of interdisciplinary between electrochemistry and solid state science towards practical applications. In order to shed light on this interesting but complicated issue with the transport properties and crystallographic aspects, systematic discussion will be made with the review of our recent publications; (1) first principle derivation of the electronic structures, (2) crystallographic mapping of the selected solid solutions, (3) quantitative elucidation of the electron-lattice interaction, (4) spectroscopic detection of the local environment with Mossbauer and EXAFS, (5) synthetic optimization of the electrode composite, and (6) electrochemical evaluation of the reaction kinetics, particularly on M = Fe, Mn.

  • PDF

The Crystal and Molecular Structures of Neo-inositol and Two Forms of Scyllo-inositol (Neo-inositol 및 Scyllo-inositol의 結晶 및 分子 構造)

  • Yeon, Younghee
    • Korean Journal of Crystallography
    • /
    • v.12 no.3
    • /
    • pp.150-156
    • /
    • 2001
  • Nea-inositol is triclinic P???, with a =4.799(1), b=6.520(1), c=6.505(1) Å, α=70.61(1), β=69.41(1), γ=73.66(1)°, Z=1, molecular symmetry ???. Scyllo-inositol, from A, is monoclinic, P2₂/c, with a=5.089(1), c=11.948(2)Å, β=116.98(2)°, Z=2, molecular symmetry ???. Form B is triclinic, P???, with a=6.725(1), b=6.797(1), c=8.635(2)° Å, α=95.45(2), β=99.49(2), γ=99.19(2)°, Z=2, molecular symmetry ???. This crystal structure is pseudo-monoclinic, having two centrosymmetrical molecules with the almost identical conformation and orientation in the crystal lattice. The molecules have the expected chair conformations with puckering parameters of Q=0.609(2)Å for n대, 0.581(2)Å for Scyllo-A, and 0.566(2) Å for Scyllo-B. The bond lengths and angles are normal, C-C, 1.505 to 1.531 8A, C-O, 1.415 to 1.440 Å, C-C-C, 108.2 to 112.9°. The molecules are linked by systems of finite and infinite chains of hydrogen bonds.

  • PDF