• 제목/요약/키워드: lattice Boltzmann method

검색결과 162건 처리시간 0.036초

COMPUTATION OF AERODYNAMIC SOUNDS AT LOW MACH NUMBERS USING FINITE DIFFERENCE LATTICE BOLTZMANN METHOD

  • Kang H. K;Tsutahara M;Shikata K;Kim E. R;Kim Y. T;Lee Y. H
    • 한국전산유체공학회지
    • /
    • 제10권1호
    • /
    • pp.8-15
    • /
    • 2005
  • Aerodynamic sounds generated by a uniform flow around a two-dimensional circular cylinder at Re=150 are simulated by applying the finite difference lattice Boltzmann method. Thethird-order-accurate up-wind scheme (UTOPIA) is used for the spatial derivatives, and the second-order-accurate Runge-Kutta scheme is applied for the time marching. We have succeed in capturing very small pressure fluctuations with the same frequency of the Karman vortex street compared with the pressure fluctuation around a circular cylinder. The propagation velocity of the acoustic waves shows that the points of peak pressure are biased upstream due to the Doppler effect in the uniform flow. For the downstream, on the other hand, it is faster. It is also apparent that the amplitude of sound pressure is proportional to r /sup -1/2/,r being the distance from the center of the circular cylinder. To investigate the effect of the lattice dependence, furthermore, 2D computations of the tone noises radiated by a square cylinder and NACA0012 with a blunt trailing edge at high incidence and low Reynolds number are also investigate.

차분래티스 볼츠만 법을 이용한 저Mach수 흐름에서의 유동소음해석 (Numerical Simulation of Aeroacoustic Noise at Low Mach Number Flows by Using the Finite Difference Lattice Boltzmann Method)

  • Eun-Ra Kim;Jeong-Hwan Kim;Ho-Keun Kang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권5호
    • /
    • pp.717-727
    • /
    • 2004
  • In this study, we simulate the aerodynamic sounds generated by a two-dimensional circular cylinder in a uniform flow are simulated by applying the finite difference lattice Boltzmann method (FDLBM). The third-order-accurate up-wind scheme (UTOPIA) is used for the spatial derivatives. and the second-order-accurate Runge-Kutta scheme is applied for the time marching. The results show that we successively capture very small acoustic pressure fluctuations with the same frequency of the Karman vortex street compared with the Pressure fluctuation around a circular cylinder The propagation velocity of the acoustic waves shows that the points of peak pressure are biased upstream due to the Doppler effect in the uniform flow For the downstream. on the other hand. it quickly Propagates. It is also apparent that the amplitude of sound Pressure is Proportional to $r^{-1/2}$, r being the distance from the center of the circular cylinder. To investigate the effect of the lattice dependence furthermore a 2D computation of the tone noise radiated by a NACA0012 with a blunt trailing edge at high incidence and low Reynolds number is also investigated.

저 Mach 수 흐름에서 차분격자볼츠만법에 의한 유동소음의 직접계산 (Direct Simulation of Flow Noise by the Lattice Boltzmann Method Based on Finite Difference for Low Mach Number Flow)

  • 강호근;이영호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.804-809
    • /
    • 2003
  • In this study, 2D computations of the Aeolian tones for some obstacles (circular cylinder, square cylinder and NACA0012 airfoil) are simulated. First of all, we calculate the flow noise generated by a uniform flow around a two-dimensional circular cylinder at Re=150 are simulated by applying the finite difference lattice Boltzmann method (FDLBM). The third-order-accurate up-wind scheme (UTOPIA) is used for the spatial derivatives, and the second-order-accurate Runge-Kutta scheme is applied for the time marching. The results show that we successively capture very small acoustic pressure fluctuation with the same frequency of the Karman vortex street compared with the pressure fluctuation around a circular cylinder. The propagation velocity of the acoustic waves shows that the points of peak pressure are biased upstream due to the Doppler effect in the uniform flow. For the downstream, on the other hand, it is faster. To investigate the effect of the lattice dependence, furthermore, simulations of the Aeolian tones at the low Reynolds number radiated by a square cylinder and a NACA0012 airfoil with a blunt trailing edge at high incidence are also investigated.

  • PDF

Study of Mass and Flow Resistance in a Square Ribbed Microchannel using Lattice Boltzmann Method

  • Taher, Mohammad Abu;Kim, Heuy-Dong;Lee, Yeon-Won
    • 동력기계공학회지
    • /
    • 제18권6호
    • /
    • pp.207-214
    • /
    • 2014
  • Mass and flow resistance in a square ribbed microchannel have been studied numerically using the Lattice Boltzmann Method. It has been build up on two dimensional nine velocity vectors model with single relaxation time method called the Lattice Bhatnagor-Gross-Krook model. To analyze the roughness effect on the flow resistance namely the friction factor and mass flow has been discussed at the slip flow regime, $0.01{\leq}Kn{\leq}0.10$, where Kn is the Knudsen number. The wall roughness is considered by square microelements with a relative roughness height up to maximum 10% of channel height. The velocity profiles in terms of streamlines near the riblets are demonstrated to be responsible for the roughness effect. It is found that the roughness effect leads to increase the flow resistance with roughness height but it is decreased significantly with increasing the space between two roughness elements as well as the Knudsen number. In addition, the mass flow decreased linearly with increasing both roughness height and gap but significantly changed at the slip flow regime.

A Dynamic Method for Boundary Conditions in Lattice Boltzmann method

  • 서용권;강금분;강상모
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2797-2802
    • /
    • 2007
  • It has been confirmed that implementation of the no-slip boundary conditions for the lattice-Boltzmann method play an important role in the overall accuracy of the numerical solutions as well as the stability of the solution procedure. We in this paper propose a new algorithm, i.e. the method of the dynamic boundary condition for no-slip boundary condition. The distribution functions on the wall along each of the links across the physical boundary are assumed to be composed of equilibrium and nonequilibrium parts which inherit the idea of Guo's extrapolation method. In the proposed algorithm, we apply a dynamic equation to reflect the computational slip velocity error occurred on the actual wall boundary to the correction; the calculated slip velocity error dynamically corrects the fictitious velocity on the wall nodes which are subsequently employed to the computation of equilibrium distribution functions on the wall nodes. Along with the dynamic selfcorrecting process, the calculation efficiently approaches the steady state. Numerical results show that the dynamic boundary method is featured with high accuracy and simplicity.

  • PDF

격자볼츠만법을 이용한 2차원 압축성 충격파의 유동현상에 관한 수치계산 (Study on Analysis of Two-dimensional Compressible Waves by Lattice Boltzmann Method)

  • 강호근;노기덕;손강필;최민선;이영호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.557-560
    • /
    • 2002
  • In this study, simulation of weak shock waves are peformed by a two-dimensional thermal fluid or compressible fluid model of the lattice Boltzmann method. The shock wave represents an abrupt change in fluids properties, in which finite variations in pressure, internal energies, and density occur over the shock thickness. The characteristics of the proposed model with a simple distribution function is verified by calculation of the sound speeds, and the shock tube problem. The reflection of a weak shock wave by wedge propagating in a channel is performed. The results agree well with those by finite difference method or by experiment. In the simulation of unsteady shock wave diffraction around a sharp corner, we show a flow field of vortical structure near the comer.

  • PDF

Lattice-Boltzmann Simulation of Fluid Flow around a Pair of Rectangular Cylinders

  • Taher, M.A.;Baek, Tae-Sil;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권1호
    • /
    • pp.62-70
    • /
    • 2009
  • In this paper, the fluid flow behavior past a pair of rectangular cylinders placed in a two dimensional horizontal channel has been investigated using Lattice-Boltzmann Method(LBM). The LBM has built up on the D2Q9 model and the single relaxation time method called the Lattice-BGK(Bhatnagar-Gross-Krook)model. Streamlines, velocity, vorticity and pressure contours are provided to analyze the important characteristics of the flow field for a wide range of non dimensional parameters that present in our simulation. Special attention is paid to the effect of spacing(d) between two cylinders and the blockage ratio A(=h/H), where H is the channel height and h is the rectangular cylinder height. for different Reynolds numbers. The first cylinder is called upstream cylinder and the second one as downstream cylinder. The downstream fluid flow fields have been more influenced by its blockage ratios(A) and Reynolds numbers(Re) whereas the upstream flow patterns(in front of downstream cylinder) by the gap length(d) between two cylinders. Moreover, it is observed that after a certain gap, both upstream and downstream flow patterns are almost similar size and shape. The simulation result has been compared with analytical solution and it is found to be in excellent agreement.

Lattice Boltzmann Method를 이용한 2차원 자유수면 시뮬레이션 기법연구 (Feasibility Study on the Two-dimensional Free Surface Simulation Using the Lattice-Boltzmann Method)

  • 정노택
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제15권4호
    • /
    • pp.273-280
    • /
    • 2012
  • 전산유체역학의 격자볼츠만법은 Navier-Stokes방정식의 시뮬레이션 기법 보다 비교적 간략한 이산화 방식으로 인하여 공학적 응용성을 더욱 넓혀 가고 있다. 본 논문에서는 단일 완화계수 및 D2Q9 방식으로 중력장하에서 액체영역에서의 다이나믹스만 계산하는 자유수면 시뮬레이션을 수행하였으며, 그 활용성을 검증하였다. 자유표면의 재구성방법, 분포함수의 조합으로 이루어진 경계조건, 표면장력, 중력장의 안정화, 격자의존성, 자유수면 끝단의 하단 벽면 이동 검증등을 수행하였으며, 그 결과치가 실험치의 데이터와 일치함을 보였다.

가상경계볼쯔만법을 이용한 자력추진 물고기 운동 익의 유영해석 (NUMERICAL ANALYSIS OF THE AIRFOIL IN SELF-PROPELLED FISH MOTION USING IMMERSED BOUNDARY LATTICE BOLTZMANN METHOD)

  • 김형민
    • 한국전산유체공학회지
    • /
    • 제16권2호
    • /
    • pp.24-29
    • /
    • 2011
  • Immersed boundary lattice Boltzmann method has been applied to analyze the characteristics of the self-propelled fish motion swimming robot. The airfoil NACA0012 with caudal fin stroke model was considered to examine the characteristics. The foil in steady forward motion and a combination of steady-state harmonic deformation produces thrust through the formation of a flow downstream from the trailing edge. The harmonic motion of the foil causes unsteady shedding of vorticity from the trailing edge, while forming the vortices at the leading edge as well. The resultant thrust is developed by the pressure difference formed on the upper and lower surface of the airfoil. and the time averaged thrust coefficient increases as Re increase in the region of $Re{\leqq}700$. The suggested numerical method is suitable to develop the fish-motion model to control the swimming robot, however It would need to extend in 3D analysis to examine the higher Re and to determine the more detail mechanism of thrust production.