• 제목/요약/키워드: lateral stiffness

검색결과 900건 처리시간 0.144초

4개의 외측 소족지 중족 족지 관절의 탈구 후 발생한 관절의 강직에서 시행한 절제 관절 성형술(1예 보고) (Resection Arthroplasty for the Treatment of Joint Stiffness after Dislocation of the Four Lateral Lesser Metatarsophalangeal Joints (A Case Report))

  • 박철현;이우천
    • 대한족부족관절학회지
    • /
    • 제16권1호
    • /
    • pp.58-61
    • /
    • 2012
  • Motion of the metatarsophalangeal joints is essential for the normal gait. Therefore it is important to recover the motion of normal joint in the treatment of stiffness of the metatarsophalangeal joints. However, there have been no report about the treatment of stiffness of the four lateral lesser metatarsophalangeal joints yet. We report an experience that good clinical and radiographic results were obtained after resection arthroplasty for the post-traumatic stiffness of the four lateral lesser metatarsophalangeal joints.

강성제어 구조물을 이용한 수평구동형 박막 PZT 엑츄에이터의 설계, 제작 및 특성평가 (Design, Fabrication and Characterization of Lateral PZT actuator using Stiffness Control)

  • 서영호;최두선;이준형;이택민;제태진;황경현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.756-759
    • /
    • 2004
  • We present a piezoelectric actuator using stiffness control and stroke amplification mechanism in order to make large lateral displacement. In this work, we suggest stiffness control approach that generates lateral displacement by increasing the vertical stiffness and reducing the lateral stiffness using additional structure. In addition, an additional structure of a serpentine spring amplifies the lateral displacement like leverage structure. The suggested lateral PZT actuator (bellows actuator) consists of serpentine spring and PZT/electrode layer which is located at the edge of the serpentine spring. The edge of the serpentine spring prevents the vertical motion of PZT layer, while the other edge of the serpentine spring makes stroke amplification like leverage structure. We have determined dimensions of the bellows actuator using ANSYS simulation. Length, width and thickness of PZT layer are 135$\mu$m, 20$\mu$m and 0.4$\mu$m, respectively. Dimensions of the silicon serpentine spring are thickness of 25$\mu$m, length of 300$\mu$m, and width of 5$\mu$m. The bellows actuator has been fabricated by SOI wafer with 25$\mu$m-top silicon and 1$\mu$m-buried oxide layer. The bellows actuator shows the maximum 3.93$\pm$0.2$\mu$m lateral displacement at 16V with 1Hz sinusoidal voltage input. In the frequency response test, the fabricated bellows actuator showed consistent displacement from 1Hz to 1kHz at 10V. From experimental study, we found the bellows actuator using thin film PZT and silicon serpentine spring generated mainly laterally displacement not vertical displacement at 16V, and serpentine spring played role of stroke amplification.

  • PDF

주행 중 실내소음과 Wheel의 Lateral Dynamic Stiffness와의 상관관계에 대한 시험적 연구 (The Experimental Study on the Correlation of the Interior Noise of a Driving Vehicle with Lateral Dynamic Stiffness of the Wheel)

  • 김병진;사정환;박진성;박현우;조성근;정헌술
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제2권1호
    • /
    • pp.9-13
    • /
    • 2014
  • 현재 소비자들이 자동차를 선택하는 여러 이유 중에서, NVH 성능이 아주 중요한 역할을 하고 있다. 근래 하이브리드 및 전기자동차들은 전통적인 차량의 주요 소음원 이었던 엔진의 소음이 거의 발생되지 않아 자동차 실내의 소음에 대한 관심은 더욱 커지고 있다. 해외 참고문헌에 의하면 자동차 휠의 높은 Lateral Dynamic Stiffness(LDS)가 운전 중 발생되는 Structure Bone Noise(SBN)를 저감시키는 것으로 기술되어 있다. 하지만 유효한 기준 및 시험적 결과가 미비하여, 본 연구에서는 LDS가 서로 다른 휠에 동일 타이어를 부착하여 실내소음을 시험 측정하였다. 그 결과 휠의 LDS에 따라 실내소음이 변화되는 것을 확인하였다. 이는 휠의 최적설계로 실내소음의 저감이 가능할수 있다.

Seismic performance of lateral load resisting systems

  • Subramanian, K.;Velayutham, M.
    • Structural Engineering and Mechanics
    • /
    • 제51권3호
    • /
    • pp.487-502
    • /
    • 2014
  • In buildings structures, the flexural stiffness reduction of beams and columns due to concrete cracking plays an important role in the nonlinear load-deformation response of reinforced concrete structures under service loads. Most Seismic Design Codes do not precise effective stiffness to be used in seismic analysis for structures of reinforced concrete elements, therefore uncracked section properties are usually considered in computing structural stiffness. But, uncracked stiffness will never be fully recovered during or after seismic response. In the present study, the effect of concrete cracking on the lateral response of structure has been taken into account. Totally 120 cases of 3 Dimensional Dynamic Analysis which considers the real and accidental torsional effects are performed using ETABS to determine the effective structural system across the height, which ensures the performance and the economic dimensions that achieve the saving in concrete and steel amounts thus achieve lower cost. The result findings exhibits that the dual system was the most efficient lateral load resisting system based on deflection criterion, as they yielded the least values of lateral displacements and inter-storey drifts. The shear wall system was the most economical lateral load resisting compared to moment resisting frame and dual system but they yielded the large values of lateral displacements in top storeys. Wall systems executes tremendous stiffness at the lower levels of the building, while moment frames typically restrain considerable deformations and provide significant energy dissipation under inelastic deformations at the upper levels. Cracking found to be more impact over moment resisting frames compared to the Shear wall systems. The behavior of various lateral load resisting systems with respect to time period, mode shapes, storey drift etc. are discussed in detail.

Analysis on the dynamic characteristics of RAC frame structures

  • Wang, Changqing;Xiao, Jianzhuang
    • Structural Engineering and Mechanics
    • /
    • 제64권4호
    • /
    • pp.461-472
    • /
    • 2017
  • The dynamic tests of recycled aggregate concrete (RAC) are carried out, the rate-dependent mechanical models of RAC are proposed. The dynamic mechanical behaviors of RAC frame structure are investigated by adopting the numerical simulation method of the finite element. It is indicated that the lateral stiffness and the hysteresis loops of RAC frame structure obtained from the numerical simulation agree well with the test results, more so for the numerical simulation which is considered the strain rate effect than for the numerical simulation with strain rate excluded. The natural vibration frequency and the lateral stiffness increase with the increase of the strain rate. The dynamic model of the lateral stiffness is proposed, which is reasonably applied to describe the effect of the strain rate on the lateral stiffness of RAC frame structure. The effect of the strain rate on the structural deformation and capacity of RAC is analyzed. The analyses show that the inter-story drift decreases with the increase of the strain rate. However, with the increasing strain rate, the structural capacity increases. The dynamic models of the base shear coefficient and the overturning moment of RAC frame structure are developed. The dynamic models are important and can be used to evaluate the strength deterioration of RAC structure under dynamic loading.

Effect of pre-stressed cable on pre-stressed mega-braced steel frame

  • Tang, Baijian;Zhang, Fuxing;Wang, Yi;Wang, Fei
    • Structural Engineering and Mechanics
    • /
    • 제59권2호
    • /
    • pp.327-341
    • /
    • 2016
  • This study addresses the effect of pre-stressed cables on a pre-stressed mega-braced steel frame through employing static analysis and pushover analysis. The performances of a pre-stressed mega-braced steel frame and a pure steel frame without mega-braces are compared in terms of base shear, ductility, and failure mode. The influence of the cable parameters is also analyzed. Numerical results show that cable braces can effectively improve the lateral stiffness of a pure frame. However, it reduces structural ductility and degenerates structural pre-failure lateral stiffness greatly. Furthermore, it is found that 20% fluctuation in the cable pretension has little effect on structural ultimate bearing capacity and lateral stiffness. As comparison, 20% fluctuation in the cable diameter has much greater impact.

고무배합물의 물성을 이용한 레이디얼 타이어의 사이드월 횡강성 계산 (Calculation of Sidewall Lateral Stiffness of a Radial Tire Using Material Properties of Rubber Compounds)

  • 김용우;김종국
    • 대한기계학회논문집A
    • /
    • 제27권10호
    • /
    • pp.1667-1675
    • /
    • 2003
  • This paper has considered the calculation of lateral stiffness of radial tire's sidewall, which consists of cord stiffness and rubber sheet stiffness, by using the material constants of rubber compounds of tire. We have suggested and illustrated how to calculate the rubber sheet lateral stiffness by considering the following aspects. First, the rubber sheet consists of various kinds of rubber compounds with different thickness along the sidewall in the radial direction. Secondly, equivalent Young's modulus of the rubber sheet can be calculated by using available experimental data of rubber compounds. The present method enables us to divide the calculation domain as many as we want, which can reduce numerical error in the calculation of geometrical and mechanical properties. We have illustrated the calculation by using the data of the radial tire for passenger car of P205/60R15.

Lateral stiffness of reinforced concrete flat plates with steps under seismic loads

  • Kim, Sanghee;Kang, Thomas H.K.;Kim, Jae-Yo;Park, Hong-Gun
    • Earthquakes and Structures
    • /
    • 제7권5호
    • /
    • pp.891-906
    • /
    • 2014
  • The purpose of this study is to propose a modification factor to reflect the lateral stiffness modification when a step is located in flat plates. Reinforced concrete slabs with steps have different structural characteristics that are demonstrated by a series of structural experiment and nonlinear analyses. The corner at the step is weak and flexible, and the associated rotational stiffness degradation at the corner of the step is identified through analyses of 6 types of models using a nonlinear finite element program. Then a systematic analysis of stiffness changes is performed using a linear finite element procedure along with rotational springs. The lateral stiffness of reinforced concrete flat plates with steps is mainly affected by the step length, location, thickness and height. Therefore, a single modification factor for each of these variables is obtained, while other variables are constrained. When multiple variables are considered, each single modification factor is multiplied by the other. Such a method is verified by a comparative analysis. Finally, a complex modification factor can be applied to the existing effective slab width.

Comparison of methods to estimate storey stiffness and storey strength in buildings

  • A.R.Vijayanarayanan;M. Saravanan;M. Surendran
    • Earthquakes and Structures
    • /
    • 제26권6호
    • /
    • pp.433-447
    • /
    • 2024
  • During earthquakes, regular buildings perform better than irregular buildings. In general, seismic design codes define a regular building using estimates of Storey Stiffness and Storey Strength. At present, seismic design codes do not recommend a specific method to estimate these parameters. Consequently, any method described in the literature can be applied to estimate the aforementioned parameters. Nevertheless, research has demonstrated that storey stiffness and storey strength vary depending on the estimation method employed. As a result, the same building can be regular or irregular, depending on the method employed to estimate storey stiffness and storey strength. Hence, there is a need to identify the best method to estimate storey stiffness and storey strength. For this purpose, the study presents a qualitative and quantitative evaluation of nine approaches used to determine storey stiffness. Similarly, the study compares six approaches for estimating storey strength. Subsequently, the study identifies the best method to estimate storey stiffness and storey strength using results of 350 linear time history analyses and 245 nonlinear time history analyses, respectively. Based on the comparison, it is concluded that the Fundamental Lateral Translational Mode Shape Method and Isolated Storey Method - A Particular Case are the best methods to estimate storey stiffness and storey strength of low-to-mid rise buildings, respectively.