• Title/Summary/Keyword: lateral stability

Search Result 841, Processing Time 0.032 seconds

Investigation on the wind-induced instability of long-span suspension bridges with 3D cable system

  • Zhang, Xin-Jun
    • Wind and Structures
    • /
    • v.14 no.3
    • /
    • pp.209-220
    • /
    • 2011
  • The cable system is generally considered to be a structural solution to increase the spanning capacity of suspension bridges. In this work, based on the Runyang Bridge over the Yangtze River, three case suspension bridges with different 3D cable systems are designed, structural dynamic characteristics, the aerostatic and aerodynamic stability are investigated numerically by 3D nonlinear aerostatic and aerodynamic analysis, and the cable system favorable to improve the wind-induced instability of long-span suspension bridges is also proposed. The results show that as compared to the example bridge with parallel cable system, the suspension bridge with inward-inclined cable system has greater lateral bending and tensional frequencies, and also better aerodynamic stability; as for the suspension bridge with outward-inclined cable system, it has less lateral bending and tensional frequencies, and but better aerostatic stability; however the suspension bridge is more prone to aerodynamic instability, and therefore considering the whole wind-induced instability, the parallel and inward-inclined cable systems are both favorable for long-span suspension bridges.

A Study on Behavior of the Lateral Movement of Breakwater by Centrifuge model Experiments (원심모형실험에 의한 방파제의 수평변위 거동에 관한 연구)

  • Lee, Dong-Won;Kim, Dong-Gun;Jun, Sang-Hyun;Yoo, Nam-Jae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1473-1478
    • /
    • 2010
  • For the cassion type of breakwater under the condition of large wave loads, stability about lateral movement of breakwater was investigated by performing centrifuge model experiments. Prototype of breakwater was modelled by scaling down to centrifuge model and the soft ground reinforced with grouting was also reconstructed in the centrifuge model experiments. Sandy ground beneath breakwater was prepared with a soil sampled in field so that identical value of internal friction angle could be obtained. Centrifuge model experiments were carried out to reconstruct the construction sequence in field. Lateral static wave load was applied to the model caisson after the final stage of construction sequence was rebuilt and the measured lateral movement of caisson was compared with allowable value by the code to assess the stability about lateral movement of the breakwater.

  • PDF

The Surgical Treatment of Acute Rupture of the Lateral Ligaments of the Ankle (급성 족관절 외측 인대 파열의 수술적 치료)

  • Lee, Keun-Il;Roh, Su-In;Choi, Ik-Su
    • Journal of Korean Foot and Ankle Society
    • /
    • v.5 no.1
    • /
    • pp.5-12
    • /
    • 2001
  • Purpose: To find out the priority of which procedure has had a better outcome both clinically and radiographically between the two groups, one is treated by primary repair and the other by modified Brostr$\ddot{o}$m's procedure, by comparing the postoperative ankle joint stability and the patient's degree of satisfaction. Material and methods: 16 cases were taken into consideration whose number of severed ligaments were at least two or more of the lateral collateral ligaments of the ankle, and also were confirmed intraoperatively. Among them, 8 cases were treated with primary repair and the other 8 cases were treated with primary repair and the other 8 cases by modified Brostr$\ddot{o}$m's procedure. Results: There was no distinguishable difference for the patient's degree of satisfaction between the two procedures above mentioned. In 3 cases treated with primary repair, functional instability was observed. In case of postoperative ankle joint stability, 7 of 8 cases treated by modified Brostr$\ddot{o}$m's procedure has revealed increased joint stability. And 3 of 8 cases which were treated by primary repair have showed postoperative residual instability. Conclusion: Actually, the severed ligament can not maintain its normal strength though several months has elapsed, and possible residual instability could be remained. Therefore, it can be expected that modified Brostr$\ddot{o}$m's procedure also would be a .good method in obtaining suitable ankle joint stability as well as subtalar joint stability because of its reinforcement using extensor retinaculum.

  • PDF

Carbody Lateral Displacement of Railway Vehicle According to 2nd Lateral Damper and Track Characteristics (철도차량 2 차 횡댐퍼 및 궤도특성에 따른 차체 횡변위 변화 연구)

  • You, Won-Hee;Shin, Yu-Jeong;Hur, Hyun-Moo;Park, Joon-Hyeok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.722-728
    • /
    • 2012
  • In railway vehicle, riding comfort depends mainly on the secondary lateral damper and track condition. When the damping force of lateral damper becomes abnormal condition or the track condition is worse, the running stability and ride comfort of the railway vehicles go down. In addition, the lateral motion of carbody is increased. Therefore, the lateral motion of carbody is reviewed carefully by considering lateral damping force and track condition of the railway line in design stage. In this study, the lateral displacement of carbody was studied in accordance with lateral damping force and track condition. The target vehicle is EMU for subway line.

  • PDF

Design of a Robust Controller to Enhance Lateral Stability of a Four Wheel Steer Vehicle with a Nonlinear Observer (비선형 관측기를 이용한 사륜조향 차량의 횡방향 안정성 강화를 위한 강인 제어기 설계)

  • Song, Jeong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.120-127
    • /
    • 2007
  • This paper describes the development of a nonlinear observer for four wheel steer (4WS) vehicle. An observer is designed to estimate the vehicle variables difficult to measure directly. A brake yaw motion controller (BYMC), which uses a PID control method, is also proposed for controlling the brake pressure of the rear and inner wheels to enhance lateral stability. It induces the yaw rate to track the reference yaw rate, and it reduces a slip angle on a slippery road. The braking and steering performances of the anti-lock brake system (ABS) and BYMC are evaluated for various driving conditions, including straight, J-turn, and sinusoidal maneuvers. The simulation results show that developed ABS reduces the stopping distance and increases the longitudinal stability. The observer estimates velocity, slip angle, and yaw rate of 4WS vehicle very well. The results also reveal that the BYMC improves vehicle lateral stability and controllability when various steering inputs are applied.

Pre-buckling deflection effects on stability of thin-walled beams with open sections

  • Mohri, F.;Damil, N.;Potier-Ferry, M.
    • Steel and Composite Structures
    • /
    • v.13 no.1
    • /
    • pp.71-89
    • /
    • 2012
  • The paper investigates beam lateral buckling stability according to linear and non-linear models. Closed form solutions for single-symmetric cross sections are first derived according to a non-linear model considering flexural-torsional coupling and pre-buckling deformation effects. The closed form solutions are compared to a beam finite element developed in large torsion. Effects of pre-buckling deflection and gradient moment on beam stability are not well known in the literature. The strength of singly symmetric I-beams under gradient moments is particularly investigated. Beams with T and I cross-sections are considered in the study. It is concluded that pre-buckling deflections effects are important for I-section with large flanges and analytical solutions are possible. For beams with T-sections, lateral buckling resistance depends not only on pre-buckling deflection but also on cross section shape, load distribution and buckling modes. Effects of pre-buckling deflections are important only when the largest flange is under compressive stresses and positive gradient moments. For negative gradient moments, all available solutions fail and overestimate the beam strength. Numerical solutions are more powerful. Other load cases are investigated as the stability of continuous beams. Under arbitrary loads, all available solutions fail, and recourse to finite element simulation is more efficient.

Effects of load height application and pre-buckling deflections on lateral buckling of thin-walled beams

  • Mohri, F.;Potier-Ferry, M.
    • Steel and Composite Structures
    • /
    • v.6 no.5
    • /
    • pp.401-415
    • /
    • 2006
  • Based on a non-linear model taking into account flexural-torsional couplings, analytical solutions are derived for lateral buckling of simply supported I beams under some representative load cases. A closed form is established for lateral buckling moments. It accounts for bending distribution, load height application and pre-buckling deflections. Coefficients $C_1$ and $C_2$ affected to these parameters are then derived. Regard to well known linear stability solutions, these coefficients are not constant but depend on another coefficient $k_1$ that represents the pre-buckling deflection effects. In numerical simulations, shell elements are used in mesh process. The buckling loads are achieved from solutions of eigenvalue problem and by bifurcations observed on non linear equilibrium paths. It is proved that both the buckling loads derived from linear stability and eigenvalue problem lead to poor results, especially for I sections with large flanges for which the behaviour is predominated by pre-buckling deflection and the coefficient $k_1$ is large. The proposed solutions are in good agreement with numerical bifurcations observed on non linear equilibrium paths.

A Study on Lateral Damper for Improving Running Performance of Subway Vehicle (도시철도 전동차 주행성능 향상을 위한 횡댐퍼에 관한 연구)

  • Jeon, Ju-Yun;Hur, Hyun-Moo;Shin, Yu-Jeong;You, Won-Hee;Koo, Jeong-Seo
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1856-1861
    • /
    • 2011
  • As a secondary suspension, the air spring has not good lateral stiffness characteristics. In order to make up for this weak point, lateral damper is used between bogie and carbody. The lateral vibration of carbody can be reduced by the lateral damper. When the damping force of lateral damper becomes worse, the running stability and ride comfort of the railway vehicle go down. Simultaneously the lateral motion of carbody is increased. In this study, the lateral displacement of carbody was studied by the multibody dynamic analysis in accordance with lateral damping force to find the cause of abnormal noise(impact noise) when the vehicle is running. The suitable lateral damping force was reviewed in order not to generate abnormal noise.

  • PDF

The Measurement Method of Lateral Displacement in Bridge Abutment. (교량구조물의 측방이동 측정방법에 관한 연구)

  • 장용채
    • Journal of Korean Port Research
    • /
    • v.14 no.1
    • /
    • pp.115-124
    • /
    • 2000
  • This study is a suggest a measurement method of lateral displacement, which can be used to judge the stability of bridge abutment on soil undergoing lateral movement. The abutment of bridge on soft foundation makes lateral movement due to the settlement of back fill and lateral flow. To measure the displacement of such a abutment, there are a lot of indirect method for measurement such as survey of leveling or inclinometer gauge around the abutment. But all of them are not sufficient to confirm the ground behavior and measure the exact lateral behavior of structure. As making the structure and pile cooperatively by measuring the movement of lateral displacement, for measuring the abutment displacement precisely by using the inclinometer. In this work, we try to suggest efficient measuring method of abutment displacement and its application.

  • PDF

Unified Chassis Control for Improvement of Vehicle Lateral Stability (차량 횡방향 안정성 향상을 위한 통합섀시 제어)

  • Cho, Wan-Ki;Yi, Kyoung-Su;Yoon, Jang-Yeol
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1126-1131
    • /
    • 2007
  • This paper presents unified chassis control (UCC) to improve the vehicle lateral stability. The unified chassis control implies combined control of active front steering (AFS), electronic stability control (ESC) and continuous damping control (CDC). A direct yaw moment controller based on a 2-D bicycle model is designed by using sliding mode control law. A direct roll moment controller based on a 2-D roll model is designed. The computed direct yaw moment and the direct roll moment are generated by AFS, ESP and CDC control modules respectively. A control authority of the AFS and the ESC is determined by tire slip angle. Computer simulation is conducted to evaluate the proposed integrated chassis controller by using the Matlab, simulink and the validated vehicle simulator. From the simulation results, it is shown that the proposed unified chassis control can provide with improved performance over the modular chassis control.

  • PDF