• Title/Summary/Keyword: lateral restraint force

Search Result 11, Processing Time 0.026 seconds

Inelastic distortional buckling of hot-rolled I-section beam-columns

  • Lee, Dong-Sik
    • Steel and Composite Structures
    • /
    • v.4 no.1
    • /
    • pp.23-36
    • /
    • 2004
  • The inelastic lateral-distortional buckling of doubly-symmetric hot-rolled I-section beam-columns subjected to a concentric axial force and uniform bending with elastic restraint which produce single curvature is investigated in this paper. The numerical model adopted in this paper is an energy-based method which leads to the incremental and iterative solution of a fourth-order eigenproblem, with very rapid solutions being obtained. The elastic restraint considered in this paper is full restraint against translation, but torsional restraint is permitted at the tension flange. Hitherto, a numerical method to analyse the elastic and inelastic lateral-distortional buckling of restrained or unrestrained beam-columns is unavailable. The prediction of the inelastic lateral-distortional buckling load obtained in this study is compared with the inelastic lateral-distortional buckling of restrained beams and the inelastic lateral-torsional buckling solution, by suppressing the out-of-plane web distortion, is published elsewhere and they agree reasonable well. The method is then extended to the lateral-distortional buckling of continuously restrained doubly symmetric I-sections to illustrate the effect of web distortion.

Distortional buckling of I-steel concrete composite beams in negative moment area

  • Zhou, Wangbao;Li, Shujin;Huang, Zhi;Jiang, Lizhong
    • Steel and Composite Structures
    • /
    • v.20 no.1
    • /
    • pp.57-70
    • /
    • 2016
  • The predominant type of buckling that I-steel concrete composite beams experience in the negative moment area is distortional buckling. The key factors that affect distortional buckling are the torsional and lateral restraints by the bottom flange. This study thoroughly investigates the equivalent lateral and torsional restraint stiffnesses of the bottom flange of an I-steel concrete composite beam under negative moments. The results show a coupling effect between the applied forces and the lateral and torsional restraint stiffnesses of the bottom flange. A formula is proposed to calculate the critical buckling stress of the I-steel concrete composite beams under negative moments by considering the lateral and torsional restraint stiffnesses of the bottom flange. The proposed method is shown to better predict the critical bending moment of the I-steel composite beams. This article introduces an improved method to calculate the elastic foundation beams, which takes into account the lateral and torsional restraint stiffnesses of the bottom flange and considers the coupling effect between them. The results show a close match in results from the calculation method proposed in this paper and the ANSYS finite element method, which validates the proposed calculation method. The proposed calculation method provides a theoretical basis for further research on distortional buckling and the ultimate resistance of I-steel concrete composite beams under a variable axial force.

Inelastic lateral-distortional buckling of continuously restrained continuous beams

  • Lee, Dong-Sik
    • Steel and Composite Structures
    • /
    • v.5 no.4
    • /
    • pp.305-326
    • /
    • 2005
  • The inelastic buckling behaviour of continuously restrained two and three-span continuous beams subjected to concentrated loads and uniformly distributed loads are studied in this paper. The restraint type considered in this paper is fully restrained against translation and elastic twist applied at the top flange. These types of restraints are most likely experienced in industrial structures, for example steel-concrete composite beams and half through girders. The buckling analysis of continuous beam consists of two parts, firstly the moment and shear distribution along the member are determined by employing force method and the information is then used for an out-of-plane buckling analysis. The finite element method is incorporated with so-called simplified and the polynomial pattern of residual stress. Owing to the inelastic response of the steel, both the in-plane and out-of-plane analysis, which is treated as being uncoupled, extend into the nonlinear range. This paper presents the results of inelastic lateral-torsional and lateral-distortional buckling load and finally conclusions are drawn regarding the web distortion.

A constitutive model for confined concrete in composite structures

  • Shi, Qing X.;Rong, Chong;Zhang, Ting
    • Steel and Composite Structures
    • /
    • v.24 no.6
    • /
    • pp.689-695
    • /
    • 2017
  • The constitutive relation is an important factor in analysis of confined concrete in composite structures. In order to propose a constitutive model for nonlinear analysis of confined concrete, lateral restraint mechanism of confined concrete is firstly analyze to study the generalities. As the foundation of the constitutive model, peak stress and peak strain is the first step in research. According to the generalities and the Twin Shear Unified Strength Theory, a novel unified equation for peak stress and peak strain are established. It is well coincident with experimental results. Based on the general constitutive relations and the unified equation for peak stress and peak strain, we propose a unified and convenient constitutive model for confined concrete with fewer material parameters. Two examples involved with steel tube confined concrete and hoop-confined concrete are considered. The proposed constitutive model coincides well with the experimental results. This constitutive model can also be extended for nonlinear analysis to other types of confined concrete.

Development of Device to Resist Horizontal Displacement of Asphalt Concrete Track (아스팔트콘크리트 궤도용 궤도변위 저항 장치 개발)

  • Lee, Seonghyeok;Yoon, Wooyong;Bae, Younghoon
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.6
    • /
    • pp.744-754
    • /
    • 2016
  • Asphalt concrete track (ACT) is a track system connecting wide sleepers and concrete panels on top of an asphalt concrete layer; such a system requires adequate resistance force against various longitudinal and lateral external loads. In this study, a series of experiments were carried out to assess the longitudinal and lateral resistance force of a wide sleeper and concrete panel type ACT. The required shear resistance force of the horizontal displacement restraint device (HDRD) was evaluated. Furthermore, a concrete block type anchor and a steel pipe type anchor were developed as HDRDs. The shear resistance force was decided based on the experimental results of horizontal shear tests for each anchor system. In addition, proper numbers and arrangement design guidelines for the HDRDs were suggested considering the shear resisting capacity and economics for HDRDs applied to ACT.

종이의 단축압축 표준시험법 개발

  • Kim, Hyoung-Jin;Um, Gi-Jeung;Lee, Tai-Ju;Ko, Seung-Tae;Yoo, Yeong-Jeong
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2007.11a
    • /
    • pp.325-330
    • /
    • 2007
  • Uniaxial tensile test are generally much simpler than uniaxial compressive test. Uniaxial compressive test is experimentally more difficult because of the low buckling resistance of a sheet of paper. In order to avoid buckling, many researchers have applied various lateral restraint techniques to investigate paper uniaxial compression behavior. Adding unnecessary force to inhibit compressive deformation of the sheet is unwanted, but sufficient force must be used to inhibit buckling. This study has been carried out to develop new uniaxial compressive standard test method without exerting unnecessary force to paper specimen to prevent buckling.

  • PDF

Deformation Capacity of Inverted V-Type Brace Strengthened by Built-up Non-welded Buckling Restraint Element (조립형 무용접 좌굴방지재로 보강된 역V형 가새의 변형성능)

  • Kim, Sun Hee;Moon, Ji Young;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.3
    • /
    • pp.261-271
    • /
    • 2015
  • Steel concentrically braced frame is an efficient system that can acquire resistance against the lateral force of buildings with the least amount of quantity. In this study is intended to proceed on the research of schemes for reinforcement by supplementing previously installed H-formed brace with non-welded cold-formed plastic stiffening materials restricting the flexure and buckling and acquire a consistent strength on the tensile and compressive force. As for the measures of supplementing previously-installed inverted V-formed braced frame, stiffening materials in the previous studies were converted to weak-axial supplementing materials to suggest a specific scheme evaluating the structural function through an experiment of members, interpretation of members, and frame-focused experiment. Reinforced brace satisfied the requirement to be prevent AISC brace from being ruptured due to imbalanced strength in the beam.

Structural Behavior of Steel Brace Strengthened with Non-welded Buckling Restraint Casing (무용접 좌굴방지재로 보강한 철골 가새의 구조거동)

  • Kim, Sun Hee;Moon, Ji Young;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.2
    • /
    • pp.207-217
    • /
    • 2015
  • A concentrically braced steel frame is a very efficient structural system because it requires relatively smaller amount of materials to resist lateral forces. However, primarily developed as a structural system to resist wind loads based on an assumption that the structure behaves elastically, a concentrically braced frame possibly experiences the deterioration in energy dissipation after brace buckling and the brittle failure of braces and connections when earthquake loads cause inelastic behavior. Consequently, plastic deformation is concentrated in the floor where brace buckling occurs first, which can lead to the rupture of the structure. This study suggests reinforcing H-shaped braces with non-welded cold-formed stiffeners to restrain flexure and buckling and resist tensile force and compressive force equally.

Case Study on the Time Zero (T0) of Event Data Recorder (사고기록장치의 기록 시점에 대한 사례연구)

  • Jongjin Park;Jeongman Park;Jungwoo Park;Byungdeok In
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.2
    • /
    • pp.35-41
    • /
    • 2023
  • On December 19, 2015, as Article 29-3 (Installation of Accident Recording Devices and Provision of Information) of Motor Vehicle Management Act came into force, In Korea, the EDR (Event Data Recorder) reports are often used for the analysis of various traffic accident cases such as multiple collisions, traffic insurance crimes, and sudden unintended acceleration (SUA), and the others. So many investigators have analyzed the driver's behavior and vehicle situation by comparing the time zero in the EDR report to the actual crash time in dash-cam (or CCTV). Time zero (T0) is defined as the reference time for the record interval or time interval when recording an accident in Article 56-2, Enforcement rule of Performance and Standard for Automobile and Automotive parts. Also in the EDR report, time zero (T0) is defined as whichever of the following occurs first; 1. "wake-up" by an air-bag control system, 2. Continuously running algorithms (by monitoring of longitudinal or lateral delta-V), 3. Deployment of a non-reversible deployment restraint. We have already proposed the "Flowchart & Checklist" to adopt the EDR report for traffic accident investigation and the necessity of specialized institutions or courses to systematically educate or analyze the EDR data. Therefore, in this paper, we report to traffic accident investigators notable points and analysis methods based on some real-world traffic accidents that can be misjudged in specifying time zero (T0).

Analysis of Track-Bridge Interaction and Retrofit Design for Installation of CWR on Non-ballasted Railway Bridge (무도상 철도교 레일 장대화를 위한 궤도-교량 상호작용 해석 및 개량방안 분석)

  • Yoon, Jae Chan;Lee, Chang Jin;Jang, Seung Yup;Choi, Sang Hyun;Park, Sung Hyun;Jung, Hyuk Sang
    • Journal of The Korean Society For Urban Railway
    • /
    • v.6 no.4
    • /
    • pp.383-392
    • /
    • 2018
  • This study investigated the change of additional axial stress of rail and reaction force at bridge bearings due to the track-bridge interaction when laying CWR on non-ballasted railway bridges including truss bridges with relatively long span. According to the results of the present study, additional axial stresses of rail and reaction forces at bridge bearings showed a large increase when CWR is installed on the non-ballasted railway bridge. The additional axial stress of rail can be acceptable if sufficient lateral resistance can be obtained. However, if the reaction force increases, there is a risk of damage of the bearing or pier, and therefore, it is necessary to take measures to mitigate the reaction force. It is found that additional axial stress of rail decreases when considering the frictional resistance of the bridge movable support, but its effect on the bearing reaction force is very small. On the other hand, when the longitudinal track restraint decreases, both additional axial stress of rail and bearing reaction force are reduced to a large extent. Also, when the ZLR fastening devices are applied to the region where the additional axial stress of rail is highest, bearing reaction force as well as additional axial stress of rail greatly decreased. Therefore, the application of ZLR fastening devices with the reduction of the longitudinal track restraints is very effective for installing CWR on non-ballasted railway bridges.