• 제목/요약/키워드: lateral resisting performance

검색결과 117건 처리시간 0.026초

Experimental study on component performance in steel plate shear wall with self-centering braces

  • Liu, Jia-Lin;Xu, Long-He;Li, Zhong-Xian
    • Steel and Composite Structures
    • /
    • 제37권3호
    • /
    • pp.341-351
    • /
    • 2020
  • Steel plate shear wall with self-centering energy dissipation braces (SPSW-SCEDB) is a lateral force-resisting system that exhibits flag-shaped hysteretic responses, which consists of two pre-pressed spring self-centering energy dissipation (PS-SCED) braces and a wall plate connected to horizontal boundary elements only. The present study conducted a series of cyclic tests to study the hysteretic performances of braces in SPSW-SCEDB and the effects of braces on the overall hysteretic characteristics of this system. The SPSW-SCEDB with PS-SCED braces only exhibits excellent self-centering capability and the energy loss caused by the large inclination angle of PS-SCED braces can be compensated by appropriately increasing the friction force. Under the combined effect of the two components, the SPSW-SCEDB exhibits a flag-shaped hysteretic response with large lateral resistance, good energy dissipation and self-centering capabilities. In addition, the wall plate is the primary energy dissipation component and the PS-SCED braces provide supplementary energy dissipation for system. The PS-SCED braces can provide up to 90% self-centering capability for the SPSW-SCEDB system. The compressive bearing capacity of the wall plate should be smaller than the horizontal remaining restoring force of the braces to achieve better self-centering effect of the system.

Experimental and numerical investigations into the composite behaviour of steel frames and precast concrete infill panels with window openings

  • Teeuwen, P.A.;Kleinman, C.S.;Snijder, H.H.;Hofmeyer, H.
    • Steel and Composite Structures
    • /
    • 제10권1호
    • /
    • pp.1-21
    • /
    • 2010
  • As an alternative for conventional structures for tall buildings, a hybrid lateral load resisting structure has been designed, enabling the assembly of tall buildings directly from a truck. It consists of steel frames with discretely connected precast concrete infill panels provided with window openings. Besides the stiffening and strengthening effect of the infill panels on the frame structure, economical benefits may be derived from saving costs on materials and labour, and from reducing construction time. In order to develop design rules for this type of structure, the hybrid infilled frame has recently been subjected to experimental and numerical analyses. Ten full-scale tests were performed on one-storey, one-bay, 3 by 3 m infilled frame structures, having different window opening geometries. Subsequently, the response of the full-scale experiments was simulated with the finite element program DIANA. The finite element simulations were performed taking into account non-linear material characteristics and geometrical non-linearity. The experiments show that discretely connected precast concrete panels provided with a window opening, can significantly improve the performance of steel frames. A comparison between the full-scale experiments and simulations shows that the finite element models enable simulating the elastic and plastic behaviour of the hybrid infilled frame.

Parametric analysis of hybrid outrigger system under wind and seismic loads

  • Neethu Elizabeth Johna;Kiran Kamath
    • Structural Engineering and Mechanics
    • /
    • 제86권4호
    • /
    • pp.503-518
    • /
    • 2023
  • In tall constructions, the outriggers are regarded as a structural part capable of effectively resisting lateral loads. This study analyses the efficacy of hybrid outrigger system in high rise RCC building for various structural parameters identified. For variations in α, which is defined as the ratio of the relative flexural stiffness of the core to the axial rigidity of the column, static and dynamic analyses of hybrid outrigger system having a virtual and a conventional outrigger at two distinct levels were conducted in the present study. An investigation on the optimal outrigger position was performed by taking the results from absolute maximum inter storey drift ratio (ISDmax), roof acceleration (accroof), roof displacement (disproof), and base bending moment under both wind and seismic loads on analytical models having 40, 60 and 80 storeys. An ideal performance index parameter was introduced and was utilized to obtain the optimal position of the hybrid outrigger system considering the combined response of ISDmax, accroof, disproof and, criteria required for the structure under wind and seismic loads. According to the behavioural study, increasing the column area and outrigger arm length will maximise the performance of the hybrid outrigger system. The analysis results are summarized in a flowchart which provides the optimal positions obtained for each dependent parameter and based on ideal performance index which can be used to make initial suggestions for installing a hybrid outrigger system.

Experimental study on hysteretic behavior of steel moment frame equipped with elliptical brace

  • Jouneghani, Habib Ghasemi;Haghollahi, Abbas
    • Steel and Composite Structures
    • /
    • 제34권6호
    • /
    • pp.891-907
    • /
    • 2020
  • Many studies reveal that during destructive earthquakes, most of the structures enter the inelastic phase. The amount of hysteretic energy in a structure is considered as an important criterion in structure design and an important indicator for the degree of its damage or vulnerability. The hysteretic energy value wasted after the structure yields is the most important component of the energy equation that affects the structures system damage thereof. Controlling this value of energy leads to controlling the structure behavior. Here, for the first time, the hysteretic behavior and energy dissipation capacity are assessed at presence of elliptical braced resisting frames (ELBRFs), through an experimental study and numerical analysis of FEM. The ELBRFs are of lateral load systems, when located in the middle bay of the frame and connected properly to the beams and columns, in addition to improving the structural behavior, do not have the problem of architectural space in the bracing systems. The energy dissipation capacity is assessed in four frames of small single-story single-bay ELBRFs at ½ scale with different accessories, and compared with SMRF and X-bracing systems. The frames are analyzed through a nonlinear FEM and a quasi-static cyclic loading. The performance features here consist of hysteresis behavior, plasticity factor, energy dissipation, resistance and stiffness variation, shear strength and Von-Mises stress distribution. The test results indicate that the good behavior of the elliptical bracing resisting frame improves strength, stiffness, ductility and dissipated energy capacity in a significant manner.

Torsional Behavior of Reinforced Concrete Multi-Story Building under Seismic Loading

  • Hong, Sung-Gul;Moritz, Alex P.;Kim, NamHee
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.314-321
    • /
    • 2000
  • Excessive torsional behavior of asymmetric building structures is observed to be the main cause of the poor seismic performance. Concepts of current design provisions for torsion are based on the assumption that the strength of the lateral load resisting elements can be adjusted without changing their stiffness. This paper investigates inelastic torsional effects of multi-story high rise residential building in Korea on increase of strength demand and ductility of members using some methods published in literature. The methods analyze the reduction of strength and member ductility resulting from torsional mechanisms. This study shows that use of these concepts control inelastic torsion during preliminary seismic design of multi-story building of irregular plans.

  • PDF

초고층 건물의 풍가속도응답 조절 기법 (Control Method of Wind Induced Vibration Level for High-rise buildings)

  • 김지은;서지현;박효선
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.375-382
    • /
    • 2005
  • In this paper, a practical control method of wind-induced vibration of high-rise buildings is presented in the form of resizing algorithm. In the structural design process for high-rise buildings, the lateral load resisting system for the building is more often determined by serviceability design criteria including wind-induced vibration level. Even though many drift method have been developed in various forms, no practical design method for wind induced vibration has been developed so far. Structural engineers rely upon heuristic or experience in designing wind induced vibration. The performance of the proposed method is evaluated by comparing wind-induced vibration levels estimated both from approximate techniques and wind tunnel test.

  • PDF

Experimental and Analytical Investigation of Web-transferred Diagrid Node under Seismic Condition

  • Jeong, Inyong;Ju, Young K.;Kim, Sang-Dae
    • 국제초고층학회논문집
    • /
    • 제1권1호
    • /
    • pp.29-36
    • /
    • 2012
  • The diagrid structural system is considered to be not only the best structural system for constructing free form structures, but also a very effective system in resisting lateral load. As a newly investigated structural system, its complicated node has not yet been completely investigated and minimal experimentation of manufacturing and constructing the system have been conducted. Therefore, the constructing cost of the diagrid structural system is still comparatively high. In this paper, the cyclic performance of a diagrid node with an H-section brace will be discussed. Design details that consider productivity were proposed and their structural performances were assessed through experimental and analytical investigation.

Hysteresis modeling for cyclic behavior of concrete-steel composite joints using modified CSO

  • Yu, Yang;Samali, Bijan;Zhang, Chunwei;Askari, Mohsen
    • Steel and Composite Structures
    • /
    • 제33권2호
    • /
    • pp.277-298
    • /
    • 2019
  • Concrete filled steel tubular (CFST) column joints with composite beams have been widely used as lateral loading resisting elements in civil infrastructure. To better utilize these innovative joints for the application of structural seismic design and analysis, it is of great importance to investigate the dynamic behavior of the joint under cyclic loading. With this aim in mind, a novel phenomenal model has been put forward in this paper, in which a Bouc-Wen hysteresis component is employed to portray the strength and stiffness deterioration phenomenon caused by increment of loading cycle. Then, a modified chicken swarm optimization algorithm was used to estimate the optimal model parameters via solving a global minimum optimization problem. Finally, the experimental data tested from five specimens subjected to cyclic loadings were used to validate the performance of the proposed model. The results effectively demonstrate that the proposed model is an easy and more realistic tool that can be used for the pre-design of CFST column joints with reduced beam section (RBS) composite beams.

Seismic performance evaluation of mid-rise shear walls: experiments and analysis

  • Parulekar, Y.M.;Reddy, G.R.;Singh, R.K.;Gopalkrishnan, N.;Ramarao, G.V.
    • Structural Engineering and Mechanics
    • /
    • 제59권2호
    • /
    • pp.291-312
    • /
    • 2016
  • Seismic performance evaluation of shear wall is essential as it is the major lateral load resisting member of a structure. The ultimate load and ultimate drift of the shear wall are the two most important parameters which need to be assessed experimentally and verified analytically. This paper comprises the results of monotonic tests, quasi-static cyclic tests and shake-table tests carried out on a midrise shear wall. The shear wall considered for the study is 1:5 scaled model of the shear wall of the internal structure of a reactor building. The analytical simulation of these tests is carried out using micro and macro modeling of the shear wall. This paper mainly consists of modification in the hysteretic macro model, developed for RC structural walls by Lestuzzi and Badoux in 2003. This modification is made by considering the stiffness degradation effect observed from the tests carried out and this modified model is then used for nonlinear dynamic analysis of the shear wall. The outcome of the paper gives the variation of the capacity, the failure patterns and the performance levels of the shear walls in all three types of tests. The change in the stiffness and the damping of the wall due to increased damage and cracking when subjected to seismic excitation is also highlighted in the paper.

Prediction of shear strength and drift capacity of corroded reinforced concrete structural shear walls

  • Yang, Zhihong;Li, Bing
    • Structural Engineering and Mechanics
    • /
    • 제83권2호
    • /
    • pp.245-257
    • /
    • 2022
  • As the main lateral load resisting system in high-rise reinforced concrete structures, the mechanical performance of shear wall has a significant impact on the structure, especially for high-rise buildings. Steel corrosion has been recognized as an important factor affecting the mechanical performance and durability of the reinforced concrete structures. To investigate the effect on the seismic behaviour of corroded reinforced concrete shear wall induced by corrosion, analytical investigations and simulations were done to observe the effect of corrosion on the ultimate seismic capacity and drift capacity of shear walls. To ensure the accuracy of the simulation software, several validations were made using both non-corroded and corroded reinforced concrete shear walls based on some test results in previous literature. Thereafter, a parametric study, including 200 FE models, was done to study the influence of some critical parameters on corroded structural shear walls with boundary element. These parameters include corrosion levels, axial force ratio, aspect ratio, and concrete compressive strength. The results obtained would then be used to propose equations to predict the seismic resistance and drift capacity of shear walls with various corrosion levels.