• Title/Summary/Keyword: lateral motion

Search Result 796, Processing Time 0.027 seconds

Geotechnical Hybrid Simulation System for the Quantitative Prediction of the Residual Deformation in the Liquefiable Sand During and After Earthquake Motion (액상화 가능 지반의 진동 도중 및 후의 잔류 변형에 대한 정량적 예측을 위한 하이브리드 시뮬레이션 시스템)

  • Kwon, Young Cheul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1C
    • /
    • pp.43-52
    • /
    • 2006
  • Despite several constitutive models have been proposed and applied, it is still difficult to choose a suitable model and to estimate adequate analysis parameters. Furthermore, a cyclic shear behavior under the volume change caused by the seepage is more complex. None of the constitutive model is available at present in the expression of the cyclic behavior of soil under an additional volume change condition by seepage. Therefore, a new geotechnical hybrid simulation system which can control the pore water immigration was developed. The system enables a quantitative evaluation of the residual deformation such as lateral spreading and settlement caused by the liquefaction. The seismic responses in a one-dimensional slightly inclined multilayered soil system are taken into consideration, and the soils are governed by both equation of motion and the continuity equation. Furthermore, the estimation and the selection of the soil parameter for the representation of the strong nonlinearity of the material are not required, because soil behaviors under the earthquake motions are directly introduced instead of a numerical soil constitutive model. This paper presents the concept and specifications of the system. By applying the system to an example problem, the permeability effect on the seismic response during cyclic shear is studied. The importance of the volume change characteristics of sandy soil during and after cyclic shear is shown in conclusion.

The Change of Nearshore Processes due to the Development of Coastal Zone (연안역 개발에 따른 해안과정의 변화)

  • Lee, J.W.;Lee, S.J.;Lee, H.;Jeong, D.D.
    • Journal of Korean Port Research
    • /
    • v.13 no.1
    • /
    • pp.155-166
    • /
    • 1999
  • The construction of the coastal structures and reclamation work causes the circulation reduced in the semi-closed inner water area and the unbalanced sediment budget of beach results in an alteration of beach topography. Among the various fluid motions in the nearshore zone water particle motion due to wave and wave-induced currents are the most responsible for sediment movement. Therefore it is needed to predict the effect of the environmental change because of development and so the prediction of wave transformation dose. The purpose of this study is to introduce the relation between waves wave-induced currents and sediment movement. In this study we will show numerical method using energy conservation equation involving reflection diffraction and reflection and the surfzone energy dissipation term due to wave breaking is included in the basic equation. For the wave-induced current the momentum equation was combined with radiation stresses lateral mixing and friction Various information is required in the prediction of wave-induced current depending on the prediction tool. We can predict changes in wave-induced current from the distribution of wave especially near the wave breaking zone. To evaluate these quantities we have to know the local condition of waves mean sea level and so on. The results from the wave field and wave-induced current field deformation models are used as input data of the sediment transport and bottom change model. Numerical model were established by a finite difference method then were applied to the development plan of the eastern Pusan coastal zone Yeonhwa-ri and Daebyun fishing port. We represented the result with 2-D graphics and made comparison between before and after development.

  • PDF

A Myometric and Electromyographic Analysis of Hip Abductor Musculature in Healthy Right-Handed Persons (股關節外轉の時の中臀筋の筋力及び活動電位の變化に關する硏究)

  • Kwon, Hyuk-Cheol
    • Physical Therapy Korea
    • /
    • v.5 no.4
    • /
    • pp.41-51
    • /
    • 1998
  • The right hip abductor musculature has been reported to demonstrate "stretch weakness" attributable to chronic elongation imposed by standing posture common to right-handed healthy persons. Kendall and associates have described the concept of "stretch weakness",. The purpose of this study was to assess isometric hip abduction torque and surface electromyographic activity (using MYOMED 432) in a sample of 40 healthy right-handed persons (20 male, 20 female), all of whom agreed to participate in the study, and compare side difference in the hip abductor musculature. In order to assure the statistical significance of the results, the paired t test was applied at the .05 level of significance. The results were as follows: 1) The difference in apparent leg length of right and left legs was significant at the .05 level. 2) There was a significant difference between right and left pelvic height (standing position) at the 05 level measurements, and scapula height at the .05 level. 3) Power measurements and action potentials of right hip abductor were greater than the left hip abductor regardless of the range of joint motion (inner range, outer range) 4) The difference in muscle power and action potentials according to inner or outer range of both hip abductor were significant at the .05 level. 5) In supine during active left hip abduction, the appearance of action potentials in the right hip abductors is indicative of contra-lateral effect (p<.05) These results suggest: In healthy right-handed persons, the apparent leg length on the right is longer than on the left, and pelvic height is elevated on the right side. Muscle those and muscle action potentials of the right hip abductor are higher than those of the left hip abductor in the lengthened position. Therefore, the results in this study are contrary to Kendall's. This type of study should be carried out in many physical therapy departments.

  • PDF

The Controller Design for Lane Following with 3-Degree of Freedom Vehicle Dynamics (3자유도 차량모델을 이용한 차선추종 µ 제어기 설계)

  • Ji, Sang-Won;Lim, Tae-Woo;You, Sam-Sang;Kim, Hwan-Seong
    • Journal of Power System Engineering
    • /
    • v.17 no.3
    • /
    • pp.72-81
    • /
    • 2013
  • Many articles have been published about a 2-degree of freedom model that includes the lateral and yaw motions for controller synthesis in intelligent transport system applications. In this paper, a 3-degree of freedom linear model that includes the roll motion is developed to design a robust steering controller for lane following maneuvers using ${\mu}$-synthesis. This linear perturbed system includes a set of parametric uncertainties in cornering stiffness and unmodelled dynamics in steering actuators. The state-space model with parametric uncertainties is represented in linear fractional transformation form. Design purpose can be obtained by properly choosing the frequency dependent weighting functions. The objective of this study is to keep the tracking error and steering input energy small in the presence of variations of the cornering stiffness coefficients. Furthermore, good ride quality has to be achieved against these uncertainties. Frequency-domain analyses and time-domain numerical simulations are carried out in order to evaluate these performance specifications of a given vehicle system. Finally, the simulation results indicate that the proposed robust controller achieves good performance over a wide range of uncertainty for the given maneuvers.

Multiple Vehicle Recognition based on Radar and Vision Sensor Fusion for Lane Change Assistance (차선 변경 지원을 위한 레이더 및 비전센서 융합기반 다중 차량 인식)

  • Kim, Heong-Tae;Song, Bongsob;Lee, Hoon;Jang, Hyungsun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.121-129
    • /
    • 2015
  • This paper presents a multiple vehicle recognition algorithm based on radar and vision sensor fusion for lane change assistance. To determine whether the lane change is possible, it is necessary to recognize not only a primary vehicle which is located in-lane, but also other adjacent vehicles in the left and/or right lanes. With the given sensor configuration, two challenging problems are considered. One is that the guardrail detected by the front radar might be recognized as a left or right vehicle due to its genetic characteristics. This problem can be solved by a guardrail recognition algorithm based on motion and shape attributes. The other problem is that the recognition of rear vehicles in the left or right lanes might be wrong, especially on curved roads due to the low accuracy of the lateral position measured by rear radars, as well as due to a lack of knowledge of road curvature in the backward direction. In order to solve this problem, it is proposed that the road curvature measured by the front vision sensor is used to derive the road curvature toward the rear direction. Finally, the proposed algorithm for multiple vehicle recognition is validated via field test data on real roads.

A fMRI study on the cerebral activity induced by Electro-acupuncture on Zusanli(St36) (족삼리(足三里)(St36)의 전침자극(電鍼刺戟)이 fMRI상 뇌활성(腦活性) 변화(變化)에 미치는 영향(影響))

  • Kim, Young-il;Kim, Young-hwa;Lim, Yun-kyoung;Lee, Hyen;Lee, Byung-ryul;Kim, Yeon-jin
    • Journal of Acupuncture Research
    • /
    • v.20 no.5
    • /
    • pp.133-150
    • /
    • 2003
  • Objective: Recently. many studies have showed the evidences of the effect of the Electro-acupuncture treatment through scientific. Methods : One of these methods is functional MRI. We performed electro-acupuncture on Zusanli(St36) and observed the change of brain activation using fMRI. Zusanli(St36) is located on the lateral side of the lower leg. 3 cun(寸) inferior to the Patella of the lower border. Theoretically and clinically. this point has been considered very important for gynecological disorders. spleen and stomach disorders. and psychological disorders. To see the effects of electro-acupuncture stimulation on Zusanli(St36). the experiment was carried out on twelve healthy volunteers. using the gradient echo sequence with the 3.0T whole-body fMRI system(ISOL). After the needle insertion on right Zusanli(St36). 2 Hz of electric stimulation was given for 30 seconds. repeated five times. with 30 seconds' intervals. The Image analysis including motion correction. talairach transformation, and smoothing was done with SPM99. Results ad conclusion : The electro-acupuncture stimulation on Zusanli(St36) activates Brodmann Area 6, 13, 2, 19, 21, 22, 39, 40, 38, 3which indicates the pathways of the electro-acupuncture stimulation on Zusanli(St36) and the possibility of the relationship of the electro-acupuncture stimulation on Zusanli(St36) with autonomic nervous system, internal organic system.

  • PDF

Seismic Performance of Steel Industrial Storage Racks Subjected to Korea Earthquakes (국내 발생지진에 의한 물류창고 강재 적재설비의 내진성능 평가)

  • Jeon, Jong-Su;Choi, Hyoungsuk;Seo, Youngdeuk;Kim, Chunggil;Heo, Gwanghee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.149-160
    • /
    • 2018
  • This study experimentally and analytically examines the seismic vulnerability of steel rack storage frames subjected to Korea earthquakes (2016 Gyeongju earthquake and 2017 Pohang earthquake). To achieve this aim, this study selects a three-story, one-bay steel rack frame with a typical configuration of rack frame in Korea. Firstly, the local behavior for frame components is examined by performing monotonic and/or cyclic load tests and the global response and dynamic characteristics of the subject rack frame are investigated by conducting a shaking table test. The analytical model of the rack frame is then created based on the experimental results and is used to perform nonlinear time history analyses with recorded Korea earthquakes. The seismic demand of the rack frame is considerably affected by the spectral acceleration response, instead of peak ground accelerations (peak floor accelerations). Moreover, the collapse fragility curve of the rack frame is developed using incremental dynamic analyses for the Gyeongju and Pohang earthquakes. Fragility results indicate that the ground motion characteristics of these earthquakes do not significantly affect the frame vulnerability at the collapse state.

Spinal Stability Evaluation According to the Change in the Spinal Fixation Segment Based on Finite Element Analysis (유한요소해석 기반 척추 고정분절 변화에 따른 척추 안정성 평가)

  • Kim, Cheol-Jeong;Son, Seung Min;Heo, Jin-Young;Lee, Chi-Seung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.3
    • /
    • pp.145-152
    • /
    • 2020
  • In this study, we evaluated spinal stability based on the change in the thoracolumbar fixation segment using finite element analysis (FEA). To accomplish this, a finite element (FE) model of a normal thoracolumbar spine (T10-L4), including intervertebral discs (IVD), ligaments, and facet joints, was constructed, and the material properties reported in previous studies were implemented. However, L1 was assumed as the lesion site, and three types of posterior fixation, namely, L1-L2, T12-L2, and T12-L1-L2, were implemented in the thoracolumbar FE model. In addition, the loading conditions for flexion, extension, lateral bending, and axial rotation were adopted. Through the series FEA, the deformation, equivalent stress, range of motion, and moment on the pedicle screws, vertebrae, and IVD were calculated, and the spinal stability was evaluated based on the FEA results.

The Effect of Korean Medicine Treatments on Facial Asymmetry: A Case Report (안면 비대칭에 대한 한의학적 치료의 효과: 증례보고)

  • Kwon, Chan-Young;Lee, Hoon-Hui;Im, Yong-Seok
    • Korean Journal of Acupuncture
    • /
    • v.34 no.3
    • /
    • pp.179-184
    • /
    • 2017
  • Objectives : Despite the applicability of Korean Medicine(KM) treatments for facial asymmetry, no relevant study has been reported. In this case report, we report the effect and safety of KM treatments on facial asymmetry by mandibular lateral displacement. Methods : Three patients suffering from facial asymmetry received twelve KM treatment sessions composed of Motion Style Treatment(MST), Yinyang Balance Appliance(YBA) of Functional Cerebrospinal Therapy(FCST), and Instrument Assisted Soft Tissue Mobilization(IASTM). The photos of each patient were taken before and after the treatment. And four primary reference lines were assessed before and after the treatment. Results : All subjects were improved after KM treatments on photos. However, no statistical significance was observed. Conclusions : This case report is the first to introduce the effect of KM treatments on facial asymmetry. Further well-designed, randomized, placebo-controlled trials are needed to verify these results.

Effects of Verbal Cue for Scapular Depression During Scapular Posterior Tilt Exercise on Scapular Muscle Activities and Clavicular Tilt Angle in Subjects With Rounded Shoulder Posture and Upper Trapezius Myofascial Pain

  • Choi, Sil-ah;Cynn, Heon-seock;Shin, A-reum;Kim, Da-eun
    • Physical Therapy Korea
    • /
    • v.24 no.3
    • /
    • pp.30-39
    • /
    • 2017
  • Background: Scapular posterior tilt (SPT) is important in the prevention of abnormal scapular movement and pain during elevation of the arm. However, previous studies have overlooked increased upper trapezius (UT) muscle activity interrupting the normal force couple of scapular motion and compensation of levator scapulae (LS) muscle activated simultaneously with UT during SPT exercise. Objects: The purpose of this study was to compare the effects of modified SPT with depression exercise versus SPT exercise on serratus anterior (SA), lower trapezius (LT), UT, and LS muscle activities and the clavicular tilt angle, in subjects with rounded shoulder posture (RSP) and myofascial pain in the UT muscle region. Methods: Eighteen subjects with RSP were recruited and randomly allocated to 2 groups; 9 in the SPT group and 9 in the SPT with depression group. All subjects met the specific RSP criteria and had myofascial pain of UT region. Depending on the allocated group, subjects performed the assigned SPT exercise and EMG data were recorded during the each exercise. Clavicular tilt angle was defined as the angle between the line joining the medial and lateral end of the clavicle and a horizontal line. Results: The SA muscle activity was significantly greater in SPT with depression than with SPT exercise (p<.05). The UT, LS muscle activity and the clavicular tilt angle was significantly lower in SPT with depression than with SPT exercise (p<.05). Conclusion: These findings were insightful because the potential risk of pain from overactivation of the UT and LS was considered, in contrast with SPT exercise. SPT with depression exercise can be implemented as an effective method to facilitate scapular muscle activity for stability and to prevent myofascial pain in the neck and shoulder.