• 제목/요약/키워드: lateral mixing

검색결과 67건 처리시간 0.026초

Modified mixing coefficient for the crossflow between sub-channels in a 5 × 5 rod bundle geometry

  • Lee, Jungjin;Lee, Jun Ho;Park, Hyungmin
    • Nuclear Engineering and Technology
    • /
    • 제52권11호
    • /
    • pp.2479-2490
    • /
    • 2020
  • We performed experiments to measure a single-phase upward flow in a 5 × 5 rod bundle with spacer grids using a particle image velocimetry, focusing on the crossflow. The Reynolds number based on the hydraulic diameter and the bulk velocity is 10,000. The ratio of pitch between rods and rod diameter is 1.4 and spacer grid is installed periodically. The turbulence in the rod bundle results from the combination of a forced mixing and natural mixing. The forced mixing by the spacer grid persists up to 10Dh from the spacer grid, while the natural mixing is attributed to the crossflow between adjacent subchannels. The combined effects contribute to a sinusoidal distribution of the time-averaged stream-wise velocity along the lateral direction, which is relatively weak right behind the spacer grid as well as in the gap. The streamwise and lateral turbulence intensities are stronger right behind the spacer grid and in the gap. Based on these findings, we newly defined a modified mixing coefficient as the ratio of the lateral turbulence intensity to the time-averaged streamwise velocity, which shows a spatial variation. Finally, we compared the developed model with the measured data, which shows a good agreement with each other.

Ion Beam Mixing과 급속열처리 방법을 이용한 Ti-SALICIDE용 $TiSi_2$ 박막 개선에 관한 연구 (Study on the Improvement of $TiSi_2$ film for Ti-SALICIDE Process Using Ion Beam Mixing and Rapid Thermal Annealing)

  • 최병선;구경완;천희곤;조동율
    • 한국진공학회지
    • /
    • 제1권1호
    • /
    • pp.168-175
    • /
    • 1992
  • Ion beam mixing과 질소분위기에서 Rapid Thermal Annealing을 이용하여 형성된 TiSi2 박막의 표면과 계면의 물리적, 전기적 특성이 크게 개선되었으며, 기존 Ti-SALICIDE 의 신뢰도 측면에서 문제가 될 수 있는 Oxide Spacer 상에서의 Lateral Silicide 형성이 최 대한 억제된 수 있었다. 또한 Ti-SALICIDE 공정에서의 Ti/Si와 Ti/SiO2의 Interaction을 반응 조건별로 연구하였다.

  • PDF

The differences in the potential energy anomaly for analyzing mixing and stratification between 2D and 3D model

  • Minh, Nguyen Ngoc;Hwang, Jin Hwan
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.240-240
    • /
    • 2015
  • As Simpson et al. (1990) emphasized the importance of the straining process in the stratification and mixing in the estuarine circulation process, various researches have investigated on the relative contribution of each process to the overall potential energy anomaly dynamics. However, many numerical works have done only for two dimensional modeling along channel or the short distance cross sectional three dimensional simulations as Burchard et al. (2008) and the estuarine channel was not simulated so far. But, in the study on the physics of shallow coastal seas, spatial dimension in the three dimensional way affects significantly on results of a particular numerical model. Therefore, the comparison of two and three dimensional models is important to understand the real physics of mixing and stratification in an estuary. Also, as Geyer and MacCready (2013) pointed out that the lateral process seems to be important in determining the periodic stratifications, to study such process the three dimensional modeling must be required. The present study uses a numerical model to show the signification roles of each term of the time-dependent dynamic equation for the potential energy anomaly (PEA) in controlling along and lateral channel flows and different stratification structures. Moreover, we present the relationships between the ${\Phi}$-advection, the depth mean straining, vertical mixing and vertical advection can explain well how water level, salinity distribution and across velocity 2D model are slightly different from 3D.

  • PDF

격자 볼츠만 방법을 이용한 미소 채널에서의 혼합효율 증가를 위한 수동형 믹서의 최적화 (Optimization of Passive Mixer for Enhanced Mixing in a Micro-channel by Using Lattice Bloltzmann Method)

  • 한규석;변성준;윤준용
    • 대한기계학회논문집A
    • /
    • 제29권5호
    • /
    • pp.707-715
    • /
    • 2005
  • In this work, Scalar Passive code in Lattice Boltzmann Method is employed to simulate two-phase flow of low Reynolds number in a micro-channel. The mixing characteristics in a micro-channel is a function of Peclet number. The mixing length increases with the Peclet number. It is found that with the inclusion of static elements at the channel, rapid mixing of two liquids can be achieved, as shown by the results of computer simulations. The enhancement in mixing performance is thought to be caused by the generation of eddies and by lateral velocity component when the mixture flows past static elements. The results indicate that the size of static element has more effect on the mixing than the number of static element.

Y-채널 마이크로믹서의 혼합 증대에 관한 연구 (Study on Mixing Enhancement of a Y-channel Micromixer with Obstacles)

  • 최장욱;최형일;이동호;이도형
    • 대한기계학회논문집B
    • /
    • 제29권12호
    • /
    • pp.1369-1376
    • /
    • 2005
  • Effective mixing gives strong advantageous impact on microfluidic applications since mixing is in general very slow process motivated by molecular diffusion transport only on the micro-scale. In this work, the mixing characteristics are analyzed in a Y-channel micromixer with obstacles. For the through analysis, our laboratory in-house unstructured grid CFD code is validated through solving a concentration transport in a uniform microchannel. The solutions well correspond to both exact solutions and those from MemCFD. Mixing in a Y-channel micromixer with obstacles is numerically investigated by the in-house code to search the optimal radius and layout of obstacles. From the simulations, the mixing efficiency appears to be proportional to the magnitude of the formation of lateral velocity component. It is also shown that the asymmetric layout and radius enlargement of obstacles greatly improves mixing efficiency.

심층혼합고결처리공법을 이용한 항만구조물 기초설치에 관한 연구 (Construction of harbor foundation using deep mixing method)

  • 한우선;이태영;임우성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.841-846
    • /
    • 2003
  • The purpose of this paper is to present and discuss some of harbor foundation constructed on seashore soft ground by Deep Wing Mixing in deep mixing method. A series of laboratory and field experiments including unconfined compressive strength, permeability, geo-physical survey, sea water concentration, lateral and settlement measurement, field core sample were carried out to check physical, mechanical and environmental characteristics of solidified foundation soil treated by HWS solidifying agent. The results from this research showed that Deep Wing Mixing method could be efficiently applied in the construction site of seashore structure foundation.

  • PDF

비대칭 미세전극을 이용한 동시 혼합 및 펌핑 (Simultaneous mixing and pumping using asymmetric microelectrodes)

  • 김병재;윤상열;이경헌;성형진
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2007년도 추계학술대회
    • /
    • pp.77-83
    • /
    • 2007
  • This paper presents numerical and experimental works for simultaneous pumping and mixing small liquid using asymmetric microelectrode arrays, based on AC electroosmotic flows. To this end, four arrangements of electrode pairs were considered with diagonal/herringbone shapes. Numerical simulations were made of three-dimensional geometries by using the linear theory. The results indicated that the helical flow motions induced by the electrode arrays play a significant role in the mixing enhancement. The pumping performance was influenced by the slip velocity at the center region of the channel compared to that near the side walls. To validate the numerical predictions, the microfluidic devices were made through MEMS. The flow rate was obtained by using micro PIV, increasing the applied frequency. The electrolyte was potassium chloride solution. The flow patterns above electrodes were visualized to see lateral flow for mixing. The experimental results showed good agreements with the numerical predictions.

  • PDF

Helical Ribbon Impeller의 중심축과 스트럿이 혼합성능에 미치는 영향 (Effect of Helical Ribbon Impeller's Center Shaft & Lateral Supporting Struts on Mixing Performance)

  • 고승태
    • Korean Chemical Engineering Research
    • /
    • 제60권3호
    • /
    • pp.468-471
    • /
    • 2022
  • 헬리컬 리본 임펠러 교반조의 중심축과 헬리컬 리본을 지지하는 스트럿의 영향을 실험과 가시화를 통하여 검토한 결과, 액위 변화에 따른 불완전 혼합부의 발생 등 혼합성능에 크게 악영향을 미치는 것은 종 방향의 중심축이 아니라 횡 방향의 스트럿임을 밝혔다.

저발열량 폐기물 소각용 유동층 소각로의 Scale-Up에 관한 연구 (A Study on the Scale-Up of Fluidized Bed Combustors for Low-Calorific Value Wastes)

  • 박승호;김종억;박범성
    • 한국연소학회지
    • /
    • 제1권1호
    • /
    • pp.1-10
    • /
    • 1996
  • An effective scale-up methodology of fluidized bed incinerators for low calorific value industrial wastes such as paper sludge and sewage sludge has been developed based on the similarity rules. Conventional scale-up theories are briefly reviewed and a new simple theory defining the diffusion Fourier number is established taking account of the lateral mixing of fuels in the fluidized bed. From the design and the operating conditions of the pilot FBC plant at Inchon, important design data for the full-scale incinerators are calculated and discussed.

  • PDF

Study on the mixing performance of mixing vane grids and mixing coefficient by CFD and subchannel analysis code in a 5×5 rod bundle

  • Bin Han ;Xiaoliang Zhu;Bao-Wen Yang;Aiguo Liu;Yanyan Xi ;Lei Liu ;Shenghui Liu;Junlin Huang
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3775-3786
    • /
    • 2023
  • Mixing Vane Grid (MVG) is one of the most important structures in fuel assembly due to its high performance in mixing the coolant and ultimately increasing Critical Heat Flux (CHF), which avoids the temperature rising suddenly of fuel rods. To evaluate the mixing performance of the MVG, a Total Diffusion Coefficient (TDC) mixing coefficient is defined in the subchannel analysis code. Conventionally, the TDC of the spacer grid is obtained from the combination of experiments and subchannel analysis. However, the processing of obtaining and determine a reasonable TDC is much challenging, it is affected by boundary conditions and MVG geometries. In is difficult to perform all the large and costing rod bundle tests. In this paper, the CFD method was applied in TDC analysis. A typical 5 × 5 MVG was simulated and validated to estimate the mixing performance of the MVG. The subchannel code was used to calculate the TDC. Firstly, the CFD method was validated from the aspect of pressure drop and lateral temperature distribution in the subchannels. Then the effect of boundary conditions including the inlet temperature, inlet velocities, heat flux ratio between hot and cold rods and the arrangement of hot and cold rods on MVG mixing and TDC were studied. The geometric effects on mixing are also carried out in this paper. The effect of vane pattern on mixing was investigated to determine which one is the best to represent the grid's mixing performance.