DOI QR코드

DOI QR Code

Study on Mixing Enhancement of a Y-channel Micromixer with Obstacles

Y-채널 마이크로믹서의 혼합 증대에 관한 연구

  • 최장욱 (한양대학교 대학원 기계공학과) ;
  • 최형일 (서울대학교 기계항공공학부) ;
  • 이동호 (서울대학교 기계항공공학부) ;
  • 이도형 (한양대학교 기계정보공학부)
  • Published : 2005.12.01

Abstract

Effective mixing gives strong advantageous impact on microfluidic applications since mixing is in general very slow process motivated by molecular diffusion transport only on the micro-scale. In this work, the mixing characteristics are analyzed in a Y-channel micromixer with obstacles. For the through analysis, our laboratory in-house unstructured grid CFD code is validated through solving a concentration transport in a uniform microchannel. The solutions well correspond to both exact solutions and those from MemCFD. Mixing in a Y-channel micromixer with obstacles is numerically investigated by the in-house code to search the optimal radius and layout of obstacles. From the simulations, the mixing efficiency appears to be proportional to the magnitude of the formation of lateral velocity component. It is also shown that the asymmetric layout and radius enlargement of obstacles greatly improves mixing efficiency.

Keywords

References

  1. Stroock, A. D., Dertinger, S. K. W, Ajdari, A., Mezic, I., Stone, H. A. and Whitesides, G. M., 2002, 'Chaotic Mixer for Microchannels,' Science, Vol. 295, pp.647-651 https://doi.org/10.1126/science.1066238
  2. Nguyen, N. T. and Wereley, S. T., 2002, Fundamentals and Applications of Microfluidics, Artech House, Boston, pp. 386-401
  3. Yang, Z., Goto, H., Matsumoto, M. and Maeda, R., 2000, 'Active Micromixer for Microfluidic Systems Using Lead-Zirconate-Titanate (PZT)-Generated Ultrasonic Vibration,' Electrophoresis, Vol. 21, Issue 1, pp. 116-119 https://doi.org/10.1002/(SICI)1522-2683(20000101)21:1<116::AID-ELPS116>3.0.CO;2-Y
  4. Knight, J. B., Vishwanath, A., Brody, J. P. and Austin, R. H., 1998, 'Hydrodynamic Focusing on a Silicon Chip: Mixing Nanoliters in Microseconds,' Phys. Rev. Left., Vol. 80, No. 17, pp. 3863-3866 https://doi.org/10.1103/PhysRevLett.80.3863
  5. Jacobson, S.C., Mcknight, T. E. and Ramsey, J. M., 1999, 'Microfluidic Devices for Electrokinetically Driven Parallel and Serial Mixing,' Anal. Chem., Vol. 71, pp. 4455-4459 https://doi.org/10.1021/ac990576aS0003-2700(99)00576-4
  6. Wolfgang, E., Volker, H. and Holger, L., 2000, Microreactors, Wiley, New York, pp. 41-85
  7. Schwesinger, N., Frank, T. and Wurmus, H., 1996, 'A Modular Microfluid System with an Integrated Micromixer,' J. Micromech. Microeng., Vol. 6, pp. 99-102 https://doi.org/10.1088/0960-1317/6/1/023
  8. Koch, M., Chatelain, D., Evans, A. G. R. and Brunnschweiler, A., 1998, 'Two Simple Micromixers Based on Silicon,' J. Micrornech. Microeng., Vol. 8, pp.123-126 https://doi.org/10.1088/0960-1317/8/2/020
  9. Koch, M., Witt, H., Evans, A. G. R. and Brunnschweiler, A., 1999, 'Improved Characterization Technique for Micromixers,' J. Micromech. Microeng., Vol. 9, pp. 156-158 https://doi.org/10.1088/0960-1317/9/2/312
  10. Liu, R. H., Stremler, M.A., Sharp, K. V., Olsen, M. G., Santiago, J. G., Adrian, R. J., Aref, H. and Beebe, D. J., 2000, 'Passive Mixing in a Three-Dimensional Serpentine Microchannel,' J. Microelectromech. Syst., Vol. 9, pp. 190-197 https://doi.org/10.1109/84.846699
  11. He, B., Burke, B. J., Zhang, X., Zhang, R. and Regnier, F. E., 2001, 'A Picoliter-Volume Mixer for Microfluidic Analytical Systems,' Anal. Chem., Vol. 73, pp. 1942-1947 https://doi.org/10.1021/ac001533t
  12. Wang, H., Iovenitti, P., Harvey,E. and Masood, S., 2002, 'Optimizing Layout of Obstacles for Enhanced Mixing in Microchannels,' Smart Materials and Structures, Vol. 11, pp. 662-667 https://doi.org/10.1088/0964-1726/11/5/306
  13. Demirdzic, I. and Muzaferija, S., 1995, 'Numerical Method for Coupled Fluid Flow, Heat Transfer and Stress of Arbitrary Topology,' Comput. Methods appl. Mech. Engrg., Vol. 125, pp. 235-255 https://doi.org/10.1016/0045-7825(95)00800-G
  14. Jessee, J. P. and Fiveland, W. A., 1996, 'A Cell Vertex Algorithm for the Incompressible Navier-Stokes Equations on Non-orthogonal Grids,' Int. J. Numer Meth. Fluids, Vol.23, pp. 1-21 https://doi.org/10.1002/(SICI)1097-0363(19960815)23:3<271::AID-FLD423>3.0.CO;2-C
  15. Jeon, N. L.., Dertinger, S. K. W., Chiu, D. T., Choi, I. S., Stroock, A. D. and Whitesides, G. M., 2000, 'Generation of Solution and Surface Gradients Using Microfluidic Systems,' Langmuir, Vol. 16, pp. 8311-8316 https://doi.org/10.1021/la000600bS0743-7463(00)00600-4
  16. Wu, Z., Nguyen, N. T. and Huang, X., 2004, 'Nonlinear Diffusive Mixing in Microchannels: Theory and Experiment,' J. Micromech. Microeng., Vol. 14, pp. 604-611 https://doi.org/10.1088/0960-1317/14/4/022

Cited by

  1. Study of a Y-Channel Micromixer with Obstacles to Enhancing Mixing vol.34, pp.9, 2010, https://doi.org/10.3795/KSME-B.2010.34.9.851