• Title/Summary/Keyword: lateral load-deflection

Search Result 116, Processing Time 0.021 seconds

Earth Pressure Acting on the Model Wall due to Repeating Surcharge Load(I) (반복상재하중에 의해 모형벽체에 작용하는 토압(I))

  • Chon, Yong-Baek
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.1
    • /
    • pp.65-74
    • /
    • 2002
  • This paper intends to investigate such effects through experiments. The contents of the investigation are effects of position of repeated loading and unloading, passing frequency. For the purpose of the investigation an experimental load-deflection system is developed and the system is possible to measure deflection of the wall and earth pressure due to different size of strip loading and cyclic loading. The findings from the experiments are as follows: 1. As repeated loading approaches to the wall, the measured horizontal residual earth pressure agrees well with Rowe's empirical formula, while as the loading is far from the wall the earth pressure consists with Boussinesq's and Spangler's formulas. Also it is found that below 0.6m depth from ground surface the effects of repeated loading can be nearly neglected. 2. From comparison analyses of earth pressure theories and experimental results, a reagression equation is suggested herein, and earth pressure at any depth and maximum earth pressure due to cyclic loading can be estimated from the equation.

  • PDF

Modified p-y curves to characterize the lateral behavior of helical piles

  • Hyeong-Joo, Kim;James Vincent, Reyes;Peter Rey, Dinoy;Tae-Woong, Park;Hyeong-Soo, Kim;Jun-Young, Kim
    • Geomechanics and Engineering
    • /
    • v.31 no.5
    • /
    • pp.505-518
    • /
    • 2022
  • This study introduces soil resistance multipliers at locations encompassed by the zone of influence of the helix plate to consider the added lateral resistance provided to the helical pile. The zone of influence of a helix plate is a function of its diameter and serves as a boundary condition for the modified soil resistance springs. The concept is based on implementing p-multipliers as a reduction factor for piles in group action. The application of modified p-y springs in the analysis of helical piles allows for better characterization and understanding of the lateral behavior of helical piles, which will help further the development of design methods. To execute the proposed method, a finite difference program, HPCap (Helical Pile Capacity), was developed by the authors using Matlab. The program computes the deflection, shear force, bending moment, and soil resistance of the helical pile and allows the user to freely input the value of the zone of influence and Ω (a coefficient that affects the value of the p-multiplier). Results from ten full-scale lateral load tests on helical piles embedded at depths of 3.0 m with varying shaft diameters, shaft thicknesses, and helix configurations were analyzed to determine the zone of influence and the magnitude of the p-multipliers. The analysis determined that the value of the p-multipliers is influenced by the ratio between the pile embedment length and the shaft diameter (Dp), the effective helix diameter (Dh-Dp), and the zone of influence. Furthermore, the zone of influence is recommended to be 1.75 times the helix diameter (Dh). Using the numerical analysis method presented in this study, the predicted deflections of the various helical pile cases showed good agreement with the observed field test results.

Effect of Pile Head Constraint on Lateral Behavior of Single Flexible Pile in Non-homogeneous Sand (비균질 사질토 지반에서 단일 휨성말뚝의 수평거동에 대한 말뚝 두부 구속효과 연구)

  • 김병탁;김영수;정성관
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.65-80
    • /
    • 1999
  • This paper shows the results of a series of model tests on the behavior of single flexible pile, which is subjected to lateral load, in non-homogeneous Nak-Dong River sands, consisting of two layers. The purpose of the present paper is to investigate the effects of ratio of lower layer thickness to embedded pile length, ratio of soil modulus of upper layer to lower one, and pile head constraint condition on the characteristics of lateral behavior of single pile. These effects can be quantified only by the results of model tests. Based on the results of model tests, in non-homogeneous sand, it was found that the lateral behavior depends upon the ratio of soil modulus of upper layer to lower one. And, in respect of deflection, it was found that the relationship between the deflection ratio of non-homogeneous to homogeneous sand and the ratio of lower layer thickness to embedded pile length can be fitted to exponential function of H/L and lateral load by model tests results. Also, in respect of maximum bending moment, it was found that the relationship H/L and $MBM_{fixed-head}/MBM_{free-head}$ can be fitted to linear function of H/L by model test results.

  • PDF

Modelling of seismically induced storey-drift in buildings

  • Lam, Nelson;Wilson, John;Lumantarna, Elisa
    • Structural Engineering and Mechanics
    • /
    • v.35 no.4
    • /
    • pp.459-478
    • /
    • 2010
  • This paper contains detailed descriptions of a dynamic time-history modal analysis to calculate deflection, inter-storey drift and storey shear demand in single-storey and multi-storey buildings using an EXCEL spreadsheet. The developed spreadsheets can be used to obtain estimates of the dynamic response parameters with minimum input information, and is therefore ideal for supporting the conceptual design of tall building structures, or any other structures, in the early stages of the design process. No commercial packages, when customised, could compete with spreadsheets in terms of simplicity, portability, versatility and transparency. An innovative method for developing the stiffness matrix for the lateral load resistant elements in medium-rise and high-rise buildings is also introduced. The method involves minimal use of memory space and computational time, and yet allows for variations in the sectional properties of the lateral load resisting elements up the height of the building and the coupling of moment frames with structural walls by diaphragm action. Numerical examples are used throughout the paper to illustrate the development and use of the spreadsheet programs.

A Study on the Reinforced Method of Doubler Plate in Ship Hull Structure (선박 이중판의 보강법 연구)

  • HAM JUH-HYEOK
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.5 s.54
    • /
    • pp.39-47
    • /
    • 2003
  • A study of the structural strength evaluation on the doubler plate, considering various load cases that were subjected to in-plane and out of plane combined load, has been performed through the systematic evaluation process. In order to estimate the proper static strength of doubler plate for various load cases, elasto-plastic large deflection analysis is introduced, including the contact effect between main plate and doubler. The characteristics of stiffness and strength variation are discussed, based on the results. In order to compare the doubler structure with the original strength of main plate, without doubler, simple formulas for the evaluation of the equivalent flat plate thickness are derived for each load case, respectively, based on the additional series of analysis of flat plate structure. Using these derived equations, the thickness change of an equivalent flat plate is analyzed according to the variation of various design parameters of doubler platesome design guides are suggested in order to maintain the original strength of main plate without doubler reinforcement. Finally, correlation between derived equivalent flat plate formula and the developed buckling strength formulas are discovered, and these relations are formulated for the future development of simple strength evaluation formula of general doubler plate structure.

Semi analytical solutions for flexural-torsional buckling of thin-walled cantilever beams with doubly symmetric cross-sections

  • Gilbert Xiao;Silky Ho;John P. Papangelis
    • Structural Engineering and Mechanics
    • /
    • v.87 no.6
    • /
    • pp.541-554
    • /
    • 2023
  • An unbraced cantilever beam subjected to loads which cause bending about the major axis may buckle in a flexuraltorsional mode by deflecting laterally and twisting. For the efficient design of these structures, design engineers require a simple accurate equation for the elastic flexural-torsional buckling load. Existing solutions for the flexural-torsional buckling of cantilever beams have mainly been derived by numerical methods which are tedious to implement. In this research, an attempt is made to derive a theoretical equation by the energy method using different buckled shapes. However, the results of a finite element flexural-torsional buckling analysis reveal that the buckled shapes for the lateral deflection and twist rotation are different for cantilever beams. In particular, the buckled shape for the twist rotation also varies with the section size. In light of these findings, the finite element flexural-torsional buckling analysis was then used to derive simple accurate equations for the elastic buckling load and moment for cantilever beams subjected to end point load, uniformly distributed load and end moment. The results are compared with previous research and it was found that the equations derived in this study are accurate and simple to use.

Lateral Behavior of Sin811e and Group Piles in Sand (사질토 지반에서 말뚝의 수평거동)

  • 김영수;김병탁
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.3-44
    • /
    • 1999
  • This paper discusses the lateral behavior of single and group piles in homogeneous and non-homogeneous(two layered) soil. In the single pile, the model tests were conducted to investigate the effects on ratio of lower layer height to embedded pile length, ratio of soil modules of upper layer to lower layer, boundary rendition of pile head and tip, embedded pile length, pile construction condition, ground condition with saturate and moisture state in Nak-Dong river sand. Also, in the group pile, the model tests were to investigate the effects on spacing-to-diameter ratio of pile, pile array, ratio of pile spacing, boundary condition of pile head and tip, eccentric load and ground condition. The maximum bending moment and deflection induced in active piles were found to be highly dependent on the relative density, pile construction condition, boundary condition of pile head and tip. Based on the results obtained, it was found that the decrease of lateral bearing capacity in saturated sand was in the range of 31% - 53% as compared with the case of dry sand. Also, in the group pile, a spacing-to-diameter of 6.0 seems to be large enough to eliminate the group effect for the case of relative density of 61.8%, and 32.8%, and then each pile in such a case behaves essentially the same as a single pile. In this study, the program is developed by using the modified Chang method which used p - y method and the exact solution of governing equation of pile and it can be used to calculate the deflection, bending moment and soil reaction with FDM in non-homogeneous soil. In comparing the modified Chang method with field test results, the predict results shows better agreement with measured results in field tests.

  • PDF

Pseudostatic Analysis of Single Column/Shafts Considering Nonlinear Soil Behavior (지반의 비선형거동을 고려한 단일현장타설말뚝의 의사정적해석)

  • Lee, Joon-Kyu;Kim, Byung-Chul;Jeong, Sang-Seom;Song, Sung-Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1C
    • /
    • pp.31-40
    • /
    • 2008
  • This study presents the assessment of pseudostatic approach for obtaining the internal response of Single Column/Shaft subjected to earthquake loading. In numerical procedure, various lateral load transfer characteristics (p-y curve and Bi-linear curve) were used to model the nonlinear behavior of soil reactions including soil-pile interaction. The analysis using nonlinear soil model could estimate the seismic performance of soil-pile system, despite its relative simplicity. It was found that lateral behavior of single column/shaft obtained from the response displacement method was larger than those by seismic intensity method. To investigate the effects of soil-pile rigidity and pile head condition on the internal pile response, parametric studies were carried out for various soil models. The results from numerical analysis showed that lateral deflection was decreased with fixed condition of pile head and decreasing the soil-pile rigidity. The seismic analysis using Bi-linear model of JRA could reasonably predict the lateral behavior of Single Column/Shaft.

Effect of the height of SCSW on the optimal position of the stiffening beam considering axial force effect

  • Azar, B. Farahmand;Hadidi, A.;Khosravi, H.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.2
    • /
    • pp.299-312
    • /
    • 2012
  • Stiffened coupled shear walls (SCSW) are under axial load resulting from their weight and this axial load affects the behavior of walls because of their excessive height. In this paper, based on the continuum approach, the optimal position of the stiffening beam on the stiffened coupled shear walls is investigated considering the effect of uniformly distributed axial loads. Moreover, the effect of the height of stiffened coupled shear walls on the optimal position of the stiffening beam has been studied with and without considering the axial force effect. A computer program has been developed in MATLAB and numerical examples have been solved to demonstrate the reliability of this method. The effects of the various flexural rigidities of the stiffening beam on the internal forces and the lateral deflection of the structure considering axial force effect have also been investigated.

Strength of biaxially loaded high strength reinforced concrete columns

  • Dundar, Cengiz;Tokgoz, Serkan
    • Structural Engineering and Mechanics
    • /
    • v.44 no.5
    • /
    • pp.649-661
    • /
    • 2012
  • An experimental research was conducted to investigate the strength of biaxially loaded short and slender reinforced concrete columns with high strength concrete. In the study, square and L-shaped section reinforced concrete columns were constructed and tested to obtain the load-deformation behaviour and strength of columns. The test results of column specimens were analysed with a theoretical method based on the fiber element technique. The theoretical ultimate strength capacities and the test results of column specimens have been compared and discussed in the paper. Besides this, observed failure mode and experimental and theoretical load-lateral deflection behaviour of the column specimens are presented.