• Title/Summary/Keyword: lateral damage

Search Result 445, Processing Time 0.025 seconds

Load-displacement Response of Gravity Load Designed Reinforced Concrete Moment Frames with Various Height of Masonry Infill Walls (조적채움벽 높이에 따른 철근콘크리트 중력골조의 하중-변위 응답)

  • Han, Ji Min;Lee, Chang Seok;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.39-47
    • /
    • 2020
  • Lightly reinforced concrete (RC) moment frames may suffer significant damage during large earthquake events. Most buildings with RC moment frames were designed without considering seismic loads. The load-displacement response of gravity load designed frames could be altered by masonry infill walls. The objective of this study is to investigate the load-displacement response of gravity load designed frames with masonry infill walls. For this purpose, three-story gravity load designed frames with masonry infill walls were considered. The masonry infilled RC frames demonstrated larger lateral strength and stiffness than bare RC frames, whereas their drift capacity was less than that of bare frames. A specimen with a partial-height infill wall showed the least drift capacity and energy dissipation capacity. This specimen failed in shear, whereas other specimens experienced a relatively ductile failure mode (flexure-shear failure).

Load/Unload Dynamics of Slider on Ramp for Various Ramp Shape (램프 형상에 대한 램프 상의 로드/언로드 동특성 해석)

  • Lee, Yong-Hyun;Park, Kyoung-Su;Park, No-Cheol;Yang, Hyun-Seok;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.467-472
    • /
    • 2005
  • Load/Unload(L/UL) technology includes the benefits, that is, increased areal density, reduced power consumption and improved shock resistance contrary to contact start stop(CSS). It has been widely used in portable hard disk drive and will become the key technology for developing the small form factor hard disk drive. The main objectives of L/UL are no slider disk contact or no media damage. For realizing those, we must consider many design parameters in L/UL systems. In this paper, we focus on the effect of the ramp profile. We can find out the lateral velocities in L/UL process through experiments and simulations for force of voice coil motor and friction force on ramp. And then, we will gain the optimal design of ramp slope to maintain the minimum clearance of suspension dimple and slider with FE model. In special, after finding the point at which air bearing breaks and designing the ramp, we will identify the results for improving unload performance.

  • PDF

Vibration Characteristics of a Nuclear Fuel Rod in Uniform Axial Flow (균일한 축방향 유동에 노출된 핵 연료봉의 진동특성 분석)

  • Jeon, Sang-Youn;Suh, Jung-Min;Kim, Kyu-Tae;Park, Nam-Gyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.11 s.116
    • /
    • pp.1115-1123
    • /
    • 2006
  • Nuclear fuel rods are exposed to axial flow in a reactor, and flow-induced-vibration due to the flow usually causes damage in the fuel rods. Thus a prior knowledge about dynamic behavior of a fuel rod exposed to the flow condition should be provided. This paper shows that dynamic characteristics of a nuclear fuel rod depend on axial flow velocity. Assuming small lateral displacement, the effects of uniform axial flow are investigated. The analytic results show that axial flow generally reduces fuel rod stiffness and raises its damping in normal condition. Also, the critical axial velocities which make the fuel rod behavior unstable were found. That is, solving generalized eigenvalue equation of the fuel rod dynamic system, the eigenvalues with positive real part are detected. Based on the simulation results, on the other hand, it turns out that the ordinary axial flow in nuclear reactors does not affect to stability of a nuclear fuel rod even in the conservative condition.

Development of Dental Chewing Masticator (치과용 저작 매스티케이터의 개발)

  • Lee, Kwon-Yong;Jung, Il-Young;Park, Sung-Ho;Jeon, Seung-Beom
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.255-258
    • /
    • 2002
  • Dental chewing masticator, which is an essential device for evaluating the wear of dental resin and the interfacial failure between the filling resin and enamel of tooth used in conservative dentistry, was developed. This dental chewing masticator mimics the chewing motion and loading by adapting DC motor and rotary cam system. Chewing loading of 49N was imposed by computer-displacement control, loadcell, LM guide, and spring system. Extracted tooth was fixed into a holding jig, and this jig was mounted with rubber pad on the $15^{\circ}$inclined surface to consider the lateral movement of periodontal ligament. A water bath was installed for providing the environment of inside mouth and for circulating the $5^{\circ}C-55^{\circ}C$ water to evaluate the effect of hydrothermal cycling on the damage of resin filled teeth during long-term chewing activity.

  • PDF

Blindness Caused by Wrapping of the ICA Aneurysm

  • Lim, Jae-Kwan;Hwang, Hyung-Sik;Moon, Seung-Myung;Choi, Sun-Kil
    • Journal of Korean Neurosurgical Society
    • /
    • v.40 no.6
    • /
    • pp.455-458
    • /
    • 2006
  • The incidence of blindness after aneurysm surgery is very rare. We experienced a case of unilateral blindness after internal carotid artery[ICA] aneurysm wrapping. A 43-year-old male immediately developed ipsilateral ocular pain and visual loss in his left eye after the treatment of a lateral ICA aneurysm by wrapping with muscle pieces. He had also multiple aneurysms, which were multilobulated anterior communicating artery [A-com], middle cerebral artery[MCA] and posterior communicating artery [P-com] aneurysms. Coilings were done for a part of A-com artery aneurysm and P-com artery aneurysm on admission. The remaining A-com artery aneurysm was clipped and ICA aneurysm was wrapped with temporal muscle piece. A retrobulbar optic neuropathy might have resulted from either direct injury or damage to small dural vessels of the posterior optic nerve. Actually, the optico-carotid space was tight and the optic nerve was compressed by swollen muscle piece. Despite releasing of compression of the optic nerve on second day, his visual loss was irreversible.

Energy-based design base shear for RC frames considering global failure mechanism and reduced hysteretic behavior

  • Merter, Onur;Ucar, Taner
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.23-35
    • /
    • 2017
  • A nonlinear static procedure considering work-energy principle and global failure mechanism to estimate base shears of reinforced concrete (RC) frame-type structures is presented. The relative energy equation comprising of elastic vibrational energy, plastic strain energy and seismic input energy is obtained. The input energy is modified with a factor depending on damping ratio and ductility, and the energy that contributes to damage is obtained. The plastic energy is decreased with a factor to consider the reduced hysteretic behavior of RC members. Given the pre-selected failure mechanism, the modified energy balance equality is written using various approximations for modification factors of input energy and plastic energy in scientific literature. External work done by the design lateral forces distributed to story levels in accordance with Turkish Seismic Design Code is calculated considering the target plastic drift. Equating the plastic energy obtained from energy balance to external work done by the equivalent inertia forces considering, a total of 16 energy-based base shears for each frame are derived considering different combinations of modification factors. Ductility related parameters of modification factors are determined from pushover analysis. Relative input energy of multi degree of freedom (MDOF) system is approximated by using the modal-energy-decomposition approach. Energy-based design base shears are compared with those obtained from nonlinear time history (NLTH) analysis using recorded accelerograms. It is found that some of the energy-based base shears are in reasonable agreement with the mean base shear obtained from NLTH analysis.

Percutaneous Cryo-Rhizotomy -A case report- (경피적 냉동요법을 이용한 척수신경 파괴술 -증례 보고-)

  • Lee, Sang-Chul;Yoon, Hea-Jo;Park, So-Young;Yoon, Mi-Ja;Ahn, Woen-Sik;Kim, Seong-Deok
    • The Korean Journal of Pain
    • /
    • v.11 no.1
    • /
    • pp.127-129
    • /
    • 1998
  • Intractable chest and abdominal wall pain responds well to root surgery. But it is better to perform this procedure less invasively with less complications. Cryoanalgesia has been developed to relieve several neurogenic pain without causing irrversible nerve damage. Well-selected percutaneous cryoablative procedure could be one of the technique of choice for some chronic pains because it has the advantage of easy application without any remarkable side effect. We did percutaneous cryoneurolysis of the spinal nerve root at the thoracic level to treat one patient with severe cancer pain on the chest wall(T4, 5, and 8 dermatomes) after successful percutaneous radiofrequency T6 and T7 posterior root rhizotomy. This procedure was performed under fluoroscopic guidance. We advanced 2 mm cryoprobe to the posterior, superior aspect of vertebral foramen on lateral view until the patient felt paresthesia. 3 times of 2 minutes freezing was applied to each spinal nerve root. The patient got immediate pain relief without any side effect.

  • PDF

Seismic vulnerability assessment of confined masonry buildings based on ESDOF

  • Ranjbaran, Fariman;Kiyani, Amir Reza
    • Earthquakes and Structures
    • /
    • v.12 no.5
    • /
    • pp.489-499
    • /
    • 2017
  • The effects of past earthquakes have demonstrated the seismic vulnerability of confined masonry structures (CMSs) to earthquakes. The results of experimental analysis indicate that damage to these structures depends on lateral displacement applied to the walls. Seismic evaluation lacks an analytical approach because of the complexity of the behavior of this type of structure; an empirical approach is often used for this purpose. Seismic assessment and risk analysis of CMSs, especially in area have a large number of such buildings is difficult and could be riddled with error. The present study used analytical and numerical models to develop a simplified nonlinear displacement-based approach for seismic assessment of a CMS. The methodology is based on the concept of ESDOF and displacement demand and is compared with displacement capacity at the characteristic period of vibration according to performance level. Displacement demand was identified using the nonlinear displacement spectrum for a specified limit state. This approach is based on a macro model and nonlinear incremental dynamic analysis of a 3D prototype structure taking into account uncertainty of the mechanical properties and results in a simple, precise method for seismic assessment of a CMS. To validate the approach, a case study was considered in the form of an analytical fragility curve which was then compared with the precise method.

Shake table test of Y-shaped eccentrically braced frames fabricated with high-strength steel

  • Lian, Ming;Su, Mingzhou
    • Earthquakes and Structures
    • /
    • v.12 no.5
    • /
    • pp.501-513
    • /
    • 2017
  • To investigate the seismic performance of Y-shaped eccentrically braced frames fabricated with high-strength steel (Y-HSS-EBFs), a shake table test of a 1:2 scaled three-story Y-HSS-EBF specimen was performed. The input wave for the shake table test was generated by the ground motions of El Centro, Taft, and Lanzhou waves. The dynamic properties, acceleration, displacement, and strain responses were obtained from the test specimen and compared with previous test results. In addition, a finite element model of the test specimen was established using the SAP2000 software. Results from the numerical analysis were compared with the test specimen results. During the shake table test, the specimen exhibited sufficient overall structural stiffness and safety but suffered some localized damage. The lateral stiffness of the structure degenerated during the high seismic intensity earthquake. The maximum elastic and elastoplastic interstory drift of the test specimen for different peak ground accelerations were 1/872 and 1/71, respectively. During the high seismic intensity earthquake, the links of the test specimen entered the plastic stage to dissipate the earthquake energy, while other structural members remained in the elastic stage. The Y-HSS-EBF is a safe, dual system with reliable seismic performance. The numerical analysis results were in useful agreement with the test results. This finding indicated that the finite element model in SAP2000 provided a very accurate prediction of the Y-HSS-EBF structure's behavior during the seismic loadings.

Force-deformation behaviour modelling of cracked reinforced concrete by EXCEL spreadsheets

  • Lam, Nelson;Wilson, John;Lumantarna, Elisa
    • Computers and Concrete
    • /
    • v.8 no.1
    • /
    • pp.43-57
    • /
    • 2011
  • Force-deformation modelling of cracked reinforced concrete is essential for a displacement-based seismic assessment of structures and can be achieved by fibre-element analysis of the cross-section of the major lateral resisting elements. The non-linear moment curvature relationship obtained from fibre-element analysis takes into account the significant effects of axial pre-compression and contributions by the longitudinal reinforcement. Whilst some specialised analysis packages possess the capability of incorporating fibre-elements into the modelling (e.g., RESPONSE 2000), implementation of the analysis on EXCEL is illustrated in this paper. The outcome of the analysis is the moment-curvature relationship of the wall cross-section, curvature at yield and at damage control limit states specified by the user. Few software platforms can compete with EXCEL in terms of its transparencies, versatility and familiarity to the computer users. The program has the capability of handling arbitrary cross-sections that are without an axis of symmetry. Application of the program is illustrated with examples of typical cross-sections of structural walls. The calculated limiting curvature for the considered cross-sections were used to construct displacement profiles up the height of the wall for comparison with the seismically induced displacement demand.