• Title/Summary/Keyword: lateral compressive stress

Search Result 98, Processing Time 0.025 seconds

A FINITE ELEMENT ANALYSIS ON THE EFFECT OF THE REVERSE HEADGEAR TO THE MAXILLARY COMPLEX (REVERSE HEADGEAR가 상악골체에 미치는 영향에 관한 유한요소법적 분석)

  • Kim, Joo-Young;Sohn, Byung-Hwa
    • The korean journal of orthodontics
    • /
    • v.15 no.1
    • /
    • pp.7-22
    • /
    • 1985
  • The purpose of this study was to analyze the stress distribution and the displacement in the maxillary complex after the application of the reverse headgear. The direction of force was parallel to the occlusal plane. Orthopedic force,300gm, was applied to the maxilla of the dry human skull in a forward direction. The stress distribution and the displacement within the maxillary Complex was analyzed by a 3-dimensional finite element method. The results were as follows: 1. The stress distribution at the molar region was greater than that at the anterior. 2. The stress distribution at the lateral side of the premaxilla was greater than that at the middle aide, especially high stress was noted at the canine eminence. 9. Compressive stress was noted only at the frontozygomatic suture of the zygomatic arch. 4. A forward, upward, and sideward displacement was noted at the entire nodal points of the zygomaticomaxillary suture portion. A displacement with a slight rotation was observed on the transverse palatine suture. 5. The maximum stress was observed at the lateral side of the maxillary tuberosity area, and generally the forward and downward displacement was noted at all this area.

  • PDF

Rock fracturing mechanisms around underground openings

  • Shen, Baotang;Barton, Nick
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.35-47
    • /
    • 2018
  • This paper investigates the mechanisms of tunnel spalling and massive tunnel failures using fracture mechanics principles. The study starts with examining the fracture propagation due to tensile and shear failure mechanisms. It was found that, fundamentally, in rock masses with high compressive stresses, tensile fracture propagation is often a stable process which leads to a gradual failure. Shear fracture propagation tends to be an unstable process. Several real case observations of spalling failures and massive shear failures in boreholes, tunnels and underground roadways are shown in the paper. A number of numerical models were used to investigate the fracture mechanisms and extents in the roof/wall of a deep tunnel and in an underground coal mine roadway. The modelling was done using a unique fracture mechanics code FRACOD which simulates explicitly the fracture initiation and propagation process. The study has demonstrated that both tensile and shear fracturing may occur in the vicinity of an underground opening. Shallow spalling in the tunnel wall is believed to be caused by tensile fracturing from extensional strain although no tensile stress exists there. Massive large scale failure however is most likely to be caused by shear fracturing under high compressive stresses. The observation that tunnel spalling often starts when the hoop stress reaches $0.4^*UCS$ has been explained in this paper by using the extension strain criterion. At this uniaxial compressive stress level, the lateral extensional strain is equivalent to the critical strain under uniaxial tension. Scale effect on UCS commonly believed by many is unlikely the dominant factor in this phenomenon.

Comparison of Biomechanical Stress on Low Back(L5/S1) for One-hand and Two-hands Lowering Activity

  • Kim, Hong-Ki
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.5
    • /
    • pp.413-420
    • /
    • 2013
  • Objective: The objective of this study was to compare one-hand and two-hands lowering activity in terms of biomechanical stress for the range of lowering heights from knuckle height to 10cm above floor level. Background: Even though two-hands lifting/lowering activity of manual materials handling tasks are prevalent at the industrial site, many manual materials handling tasks which require the worker to perform one-hand lifting/lowering are also very common at the industrial site and forestry and farming. Method: Eight male subjects were asked to perform lowering tasks using both a one-handed as well as a two-handed lowering technique. Trunk muscle electromyographic activity was recorded while the subjects performed the lowering tasks. This information was used as input to an EMG-assisted free-dynamic biomechanical model that predicted spinal loading in three dimensions. Results: It was shown that for the left-hand lowering tasks, the values of moment, lateral shear force, A-P shear force, and compressive force were increased by the average 6%, as the workload was increased twice from 7.5kg to 15kg. For the right-hand lowering task, these were increased by the average 17%. For the two-hands lowering tasks, these were increased by the average 14%. Conclusion: Even though the effect of workload on the biomechanical stress for both one-hand and two-hands lowering tasks is not so significant for the workload less than 15kg, it can be claimed that the biomechanical stress for one-hand lowering is greater than for two-hands lowering tasks. Therefore, it can be concluded that asymmetrical lowering posture would give greater influence on the biomechanical stress than the workload effect for one-hand lowering activity. Application: The result of this study may be used to provide guidelines of recommended safe weights for tasks involved in one-hand lowering activity.

Damage Characteristics of Quasi Isotropic Composite Laminates Subjected to Low Velocity Impact (준등방성 복합적층판의 저속충격에 의한 손상특성)

  • Kim, J.H.;Jeon, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.6
    • /
    • pp.135-141
    • /
    • 1997
  • Low velocity impact test and compressive residual strength test after impact were performed by using Hercules AS4/3501-6[45/0/-45/90]$_{2s}$ laminated plate to investigate the low velocity impact damage behavior and the post-impact strength degradation on orthotropic composite laminate plate. Due to the lateral impact losd, the load path showed "" shape according to the laminate central deflection. Damage in a laminate occurs by inclined matrix crack at the damage initiation load stage and vertical matrix crack, occurs on the outer surface. Evaluating the compressive residual strength after the low velocty impact test, it could be found that there is a transient range where the compressive residual strength drop suddenly in the initial damage which is in the matrix crack range and the initial delamination area. is in the matrix crack range and the initial delamination area.

  • PDF

Axial compressive residual ultimate strength of circular tube after lateral collision

  • Li, Ruoxuan;Yanagihara, Daisuke;Yoshikawa, Takao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.396-408
    • /
    • 2019
  • The tubes which are applied in jacket platforms as the supporting structure might be collided by supply vessels. Such kind of impact will lead to plastic deformation on tube members. As a result, the ultimate strength of tubes will decrease compared to that of intact ones. In order to make a decision on whether to repair or replace the members, it is crucial to know the residual strength of the tubes. After being damaged by lateral impact, the simply supported tubes will definitely loss a certain extent of load carrying capacity under uniform axial compression. Therefore, in this paper, the relationship between the residual ultimate strength of the damaged circular tube by collision and the energy dissipation due to lateral impact is investigated. The influences of several parameters, such as the length, diameter and thickness of the tube and the impact energy, on the reduction of ultimate strength are investigated. A series of numerical simulations are performed using nonlinear FEA software LS-DYNA. Based on simulation results, a non-dimensional parameter is introduced to represent the degree of damage of various size of tubes after collision impact. By applying this non-dimensional parameter, a simplified formula has been derived to describe the relationship between axial compressive residual ultimate and lateral impact energy and tube parameters. Finally, by comparing with the allowable compressive stress proposed in API rules (RP2A-WSD A P I, 2000), the critical damage of tube due to collision impact to be repaired is proposed.

The Effect of a Compressive Follower Pre-load on the Ligament of Lumbar Spine and the Relationship with Low Back Pain (압축 종동 예하중이 요추 인대에 미치는 영향과 요통과의 관계)

  • Moon, Chang-Hyun;Chung, Tae-Eun;Sin, Hyo-Chol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.63-69
    • /
    • 2010
  • A noble model of the whole lumbar spine (L1~L5) considering all the passive elements, especially the ligaments of the lumbar spine was developed. The purpose of this study was to investigate the relationship between the shear stress of the AVB and the ALL and the effect of a compressive follower pre-load on all ligaments with various motions. The result shows that the shear stress at the AVB and the ALL are positively correlated. This indicates that the shear stress of the ligament can be used an index of low back pain. Regarding the effect of a follower pre-load, contrary to our expectation, the shear stress of the ligaments was not always reduced by applying follower pre-load; flexion was decreased and axial rotation did not change, while extension and lateral bending were increased.

Seismic Behavior of Concrete Cylinders Reinforced by Outside Lateral Hoops (외측 횡 구속된 콘크리트 공시체의 내진 거동)

  • Choi, Eunsoo;Kim, Byeong Hwa;Shin, Jae Kwan;Lee, Do Hyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.45-51
    • /
    • 2014
  • This paper investigates experimentally the confinement effect on concrete. For this purpose, outside lateral reinforcement members made of stainless steel and GFRP were employed. Then, uniaxial compressive tests on concrete cylinders incorporating the members were conducted. A total of 30 cylinder specimens, specifically, 6 unconfined specimens, 12 specimens confined by stainless steel and 12 specimens confined by GFRP, were fabricated. The failure patterns of both unconfined and confined specimens were assessed and discussed based on experimental results. The results proved that the maximum stress and corresponding strains of the cylinders confined using the proposed hoops are increased in comparison with those of the unconfined. This supports that the current work can be used for retrofitting concrete members and structures and thus may lead to increased stability of such structures.

Post-peak response analysis of SFRC columns including spalling and buckling

  • Dhakal, Rajesh P.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.3
    • /
    • pp.311-330
    • /
    • 2006
  • Standard compression tests of steel fiber reinforced concrete (SFRC) cylinders are conducted to formulate compressive stress versus compressive strain relationship of SFRC. Axial pullout tests of SFRC specimens are also conducted to explore its tensile stress strain relationship. Cover concrete spalling and reinforcement buckling models developed originally for normal reinforced concrete are modified to extend their application to SFRC. Thus obtained monotonic material models of concrete and reinforcing bars in SFRC members are combined with unloading/reloading loops used in the cyclic models of concrete and reinforcing bars in normal reinforced concrete. The resulting path-dependent cyclic material models are then incorporated in a finite-element based fiber analysis program. The applicability of these models at member level is verified by simulating cyclic lateral loading tests of SFRC columns under constant axial compression. The analysis using the proposed SFRC models yield results that are much closer to the experimental results than the analytical results obtained using the normal reinforced concrete models are.

Strength and Ductility of High-Strength Reinforced Concrete Columns under Uniaxial Loads (중심 축력을 받는 고강도 철근 콘크리트 기둥의 내력 및 연성에 관한 연구)

  • 이강건;이재연;김성수;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.10a
    • /
    • pp.57-62
    • /
    • 1990
  • This paper is to study the effect of rectilinear confinement in high-strength concrete subjected to a monotonically increasing compressive axial loads. To investigate behavior of columns rectilinearly confined with lateral ties and longitudinal rebars, twelve specimens including two plain concrete specimens were tested. The main variables in this study are volumetric ratio of lateral ties, cistribution of lateral ties, yield strength of logitudinal steel, ratio of area of longitudinal steel to the area of cross section. The test results were not only compared with an empirical model for the stress-strain curve of rectilinearly confined high-strength concrete but also the existing model. The empirical model used calculating column capacity shows better agreement with the test results tham the existing model.

  • PDF

Constitutive Modeling of Confined Concrete under Concentric Loading

  • Lee, Cha-Don;Park, Ki-Bong;Cha, Jun-Sil
    • KCI Concrete Journal
    • /
    • v.13 no.1
    • /
    • pp.69-78
    • /
    • 2001
  • The inelastic behavior of a reinforced concrete columns is influenced by a number of factors : 1) level of axial load, 2) tie spacing, 3) volumetric ratio of lateral steel, 4) concrete strength, 5) distribution of longitudinal steel, 6) strength of lateral steel, 7) cover thickness, 8) configuration of lateral steel, 9) strain gradient, 10) strain rate, 11) the effectively confined concrete core area, and 12) amount of longitudinal steel. A new constitutive model of a confined concrete is suggested in order to investigate the nonlinear behavior of the reinforced concrete columns under concentric loading. The developed constitutive model for the confined concrete takes into account the effects of effectively confined area as well as the horizontal and longitudinal distributions of the confining pressures. None of the existing models incorporated these two main effects at the same time. A total of different six constitutive models for the behavior of the confined concrete under concentric compression were compared with the sixty-one test results reported by different researchers. The superiority of the developed model in its accuracy is demonstrated by evaluating the error function, which compares the weighted averages for the sum of squared relative differences in peak compressive strength and corresponding strain, stress at strain equal to 0.015, and total area under stress-strain curve up to strain equal to 0.015.

  • PDF