• Title/Summary/Keyword: lateral compression

Search Result 382, Processing Time 0.028 seconds

A Case of Pulmonary Gangrene Associated with Obstructive Pneumonia Due to Non-small Cell Lung Carcinoma (위치에 따라 이동하는 종괴를 포함한 공동으로 진행된 비소세포폐암에 동반된 폐렴)

  • Kim, Sung-Jun;Um, Tae-Chan;Moon, Kwie-Ae;Kim, Phil-Ho;Kim, Sang-Hyun;Jeoung, Byung-Oh;Lee, Hyuk-Pyo;Kim, Joo-In;Yum, Ho-Kee;Choi, Soo-Jeon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.46 no.4
    • /
    • pp.591-595
    • /
    • 1999
  • Pulmonary gangrene is a rare complication of severe pulmonary infection in which a pulmonary segment or lobe is sloughed. It is a part of a spectrum of disease in which lung tissue is devitalized(such as necrotizing pneumonia, pulmonary abscess), but apart from them, pulmonary gangrene has more extensive area of necrosis and thrombosis of large vessels plays a prominent role in the pathogenesis. We experienced a case of pulmonary gangrene in 71 year old female obstructive pneumonia patient with non-small cell lung carcinoma. She complained high fever, chill and despite treatment with antibiotics, pneumonia progressed to empyema. At that time chest radiograph showed a large cavity including sloughed lung tissue, freely moving to dependent position at both lateral decubitus view. RML and RLL were resected and compression of pulmonary vessels by enlarged lymph nodes was observed. Defervescence was obtained immediate postoperative period and the patient was discharged after infection control with antibiotics, chest tube drainage. The perivascular lymph nodes dissected during lobectomy were proved to be reactive hyperplasias. We speculated that the carcinoma caused obstructive pneumonia, in turn, resulted in reactive hyperplasia of the draining lymph nodes surrounding the large vessels and finally the lung tissues supplied by them necrotized and sloughed.

  • PDF

A Study on the Stress-Strain Prediction of Silty Clay (점성토(粘性土)의 응력(應力) - 변형(變形) 추정(推定)에 관(關)한 연구(硏究))

  • Cho, Seong Seup;Kang, Yea Mook;Chung, Seong Gyu;Yun, Hyun Chung
    • Korean Journal of Agricultural Science
    • /
    • v.19 no.1
    • /
    • pp.65-78
    • /
    • 1992
  • The paper describes the comparison between observed and predicted stress-strain characteristics of marine silty clay in Dangjin district. For prediction, the hyperbolic model which is applied the parameters acquiring by physical and triaxial compression test was adopted, and the obtained results were summarized as follows: 1. The Young's modulus were increased with decreasing of moisture contents and increasing of dry density. 2. The most affective factor to hyperbolic model is lateral stress and dry density. and than cohesion and internal friction angle. 3. The comparision between the statistical and hyperbolic values of maximum deviator stress have few accordance. and the statisticals is lower than the hyperbolics. 4. Without. much labor and tiresome procedures, effective computer program was made and applied, but technical procedure for prevents test errors of parameter calculation is importants.

  • PDF

Structural Behavior of Composite Basement Wall According to Shear Span-to-Depth Ratio and FE Analysis Considering the Condition of Contact Surface (전단경간비에 따른 합성지하벽의 거동과 접촉면의 조건을 고려한 유한요소 해석)

  • Seo, Soo Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.118-126
    • /
    • 2011
  • The objective of this paper is to study the structural behavior of Composite Basement Wall (CBW) according to shear span-to-depth ratio through an experiment and predict the nonlinear behavior of CBW by using ADINA program widely has been being used for FE analysis. Especially, this study focuses on the part of CBW in which the Reinforced Concrete (RC) is under compression stress; At the region of CBW around each floor, RC part stresses by compressive force when lateral press by soil acts on the wall. The contact condition between RC wall and steel (H-Pile) including stud connector is main factor in the analysis since it governs overall structural behavior. In order to understand the structural behavior of CBW whose RC part is under compressive stress, an experimental work and finite element analysis were performed. Main parameter in the test is shear span-to-depth ratio. For simplicity in analysis, reinforcements were not modeled as a seperated element but idealized as smeared to concrete. All elements were modeled to have bi-linear relation of material properties. Three type of contact conditions such as All Generate Option (AGO), Same Element Group Option with Tie(SEGO-T) and Same Element Group Option with Not tie(SEGO-NT) were considered in the analysis. For each analysis, the stress flow and concentration were reviewed and analysis result was compared to test one. From the test result, CBW represented ductile behavior by contribution of steel member even if it had short shear span-to-depth ration which is close to "1". The global composite behavior of CBW whose concrete wall was under compressive stress could be predicted by using contact element in ADINA program. Especially, the modeling by using AGO and SEGO-T showed more close relation on comparing with test result.

Minimally Invasive Anterior Decompression Technique without Instrumented Fusion for Huge Ossification of the Posterior Longitudinal Ligament in the Thoracic Spine : Technical Note And Literature Review

  • Yu, Jae Won;Yun, Sang-O;Hsieh, Chang-Sheng;Lee, Sang-Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.5
    • /
    • pp.597-603
    • /
    • 2017
  • Objective : Several surgical methods have been reported for treatment of ossification of the posterior longitudinal ligament (OPLL) in the thoracic spine. Despite rapid innovation of instruments and techniques for spinal surgery, the postoperative outcomes are not always favorable. This article reports a minimally invasive anterior decompression technique without instrumented fusion, which was modified from the conventional procedure. The authors present 2 cases of huge beak-type OPLL. Patients underwent minimally invasive anterior decompression without fusion. This method created a space on the ventral side of the OPLL without violating global thoracic spinal stability. Via this space, the OPLL and anterior lateral side of the dural sac can be seen and manipulated directly. Then, total removal of the OPLL was accomplished. No orthosis was needed. In this article, we share our key technique and concepts for treatment of huge thoracic OPLL. Methods : Case 1. 51-year-old female was referred to our hospital with right lower limb radiating pain and paresis. Thoracic OPLL at T6-7 had been identified at our hospital, and conservative treatment had been tried without success. Case 2. This 54-year-old female with a 6-month history of progressive gait disturbance and bilateral lower extremity radiating pain (right>left) was admitted to our institute. She also had hypoesthesia in both lower legs. Her symptoms had been gradually progressing. Computed tomography scans showed massive OPLL at the T9-10 level. Magnetic resonance imaging of the thoracolumbar spine demonstrated ventral bony masses with severe anterior compression of the spinal cord at the same level. Results : We used this surgical method in 2 patients with a huge beaked-type OPLL in the thoracic level. Complete removal of the OPLL via anterior decompression without instrumented fusion was accomplished. The 1st case had no intraoperative or postoperative complications, and the 2nd case had 1 intraoperative complication (dural tear) and no postoperative complications. There were no residual symptoms of the lower extremities. Conclusion : This surgical technique allows the surgeon to safely and effectively perform minimally invasive anterior decompression without instrumented fusion via a transthoracic approach for thoracic OPLL. It can be applied at the mid and lower level of the thoracic spine and could become a standard procedure for treatment of huge beak-type thoracic OPLL.

Stiffness Reduction Effect of Vertically Divided Reinforced Concrete Shear Walls Under Cyclic Loading (반복하중을 받는 수직분할된 철근콘크리트 전단벽의 강성저감효과)

  • Hwangbo, Dong-Sun;Son, Dong-Hee;Bae, Baek-Il;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.103-110
    • /
    • 2022
  • The purpose of this study is to experimentally evaluate the stiffness and strength reduction according to the reinforcing bar details of the vertically divided reinforced concrete shear walls. To confirm the effect of reducing strength and stiffness according to vertical division, four real-scale specimens were fabricated and repeated lateral loading tests were performed. As a result of the experiment, it was confirmed that the strength and stiffness were decreased according to the vertical division. In particular, as the stiffness reduction rate is greater than the strength reduction rate, it is expected that safety against extreme strength can be secured when the load is redistributed according to vertical division. As a result of checking the crack pattern, a diagonal crack occurred in the wall subjected to compression control among the divided walls. It was confirmed that two neutral axes occurred after division, and the reversed strain distribution appeared in the upper part, showing the double curvature pattern. In future studies, it is necessary to evaluate the stiffness reduction rate considering the effective height of the wall, to evaluate additional variables such as wall aspect ratio, and to conduct analytical studies on various walls using finite element analysis.

Mechanical properties of new stainless steel-aluminum alloy composite joint in tower structures

  • Yingying Zhang;Qiu Yu;Wei Song;Junhao Xu;Yushuai Zhao;Baorui Sun
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.517-532
    • /
    • 2023
  • Tower structures have been widely used in communication and transmission engineering. The failure of joints is the leading cause of structure failure, which make it play a crucial role in tower structure engineering. In this study, the aluminum alloy three tube tower structure is taken as the prototype, and the middle joint of the tower was selected as the research object. Three different stainless steel-aluminum alloy composite joints (SACJs), denoted by TA, TB and TC, were designed. Finite element (FE) modeling analysis was used to compare and determine the TC joint as the best solution. Detail requirements of fasteners in the TC stainless steel-aluminum alloy composite joint (TC-SACJ) were designed and verified. In order to systematically and comprehensively study the mechanical properties of TC-SACJ under multi-directional loading conditions, the full-scale experiments and FE simulation models were all performed for mechanical response analysis. The failure modes, load-carrying capacities, and axial load versus displacement/stain testing curves of all full-scale specimens under tension/compression loading conditions were obtained. The results show that the maximum vertical displacement of aluminum alloy tube is 26.9mm, and the maximum lateral displacement of TC-SACJs is 1.0 mm. In general, the TC-SACJs are in an elastic state under the design load, which meet the design requirements and has a good safety reserve. This work can provide references for the design and engineering application of aluminum alloy tower structures.

Experimental and numerical investigation on flexural response of reinforced rubberized concrete beams using waste tire rubber

  • Memduh Karalar;Hakan Ozturk;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • v.48 no.1
    • /
    • pp.43-57
    • /
    • 2023
  • The impacts of waste tire rubber (WTR) on the bending conduct of reinforced concrete beams (RCBs) are investigated in visualization of experimental tests and 3D finite element model (FEM) using both ANSYS and SAP2000. Several WTR rates are used in total 4 various full scale RCBs to observe the impact of WTR rate on the rupture and bending conduct of RCBs. For this purpose, the volumetric ratios (Vf) of WTR were chosen to change to 0%, 2.5%, 5% and 7.5% in the whole concrete. In relation to experimental test consequences, bending and rupture behaviors of the RCBs are observed. The best performance among the beams was observed in the beams with 2.5% WTR. Furthermore, as stated by test consequences, it is noticed that while WTR rate in the RCBs is improved, max. bending in the RCBs rises. For test consequences, it is clearly recognized as WTR rate in the RCB mixture is improved from 0% to 2.5%, deformation value in the RCB remarkably rises from 3.89 cm to 7.69 cm. This consequence is markedly recognized that WTR rates have a favorable result on deformation values in the RCBs. Furthermore, experimental tests are compared to 3D FEM consequences via using ANSYS software. In the ANSYS, special element types are formed and nonlinear multilinear misses plasticity material model and bilinear misses plasticity material model are chosen for concrete and compression and tension elements. As a consequence, it is noticed that each WTR rates in the RCBs mixture have dissimilar bending and rupture impacts on the RCBs. Then, to observe the impacts of WTR rate on the constructions under near-fault ground motions, a reinforced-concrete building was modelled via using SAP2000 software using 3-D model of the construction to complete nonlinear static analysis. Beam, column, steel haunch elements are modeled as nonlinear frame elements. Consequently, the seismic impacts of WTR rate on the lateral motions of each floor are obviously investigated particularly. Considering reduction in weight of structure and capacity of the members with using waste tire rubber, 2.5% of WTR resulted in the best performance while the construction is subjected to near fault earthquakes. Moreover, it is noticeably recognized that WTR rate has opposing influences on the seismic displacement behavior of the RC constructions.

An effect of immediate orthodontic force on palatal endosseous appliance$(C-Palatal\;Plate^{TM})$ in beagle Dog (성견 구개부 골내고정원 장치에 가해진 즉시 교정력이 주위조직에 미치는 영향)

  • Kim, Su-Jung;Lee, Young-Jun;Chug, Kyu-Rhim
    • The korean journal of orthodontics
    • /
    • v.33 no.2 s.97
    • /
    • pp.91-102
    • /
    • 2003
  • This study was performed to investigate the effect of immediate orthodontic force on soft md hard tissues surrounding C-Palatal $Plate^{TM}$ in beagle Dog. Immediately after this appliance was implanted on the midpalate of 4 adult beagle Dogs, 400gm continuous orthodontic force was applied. Experimental animals were euthanized at 8weeks, 18weeks, and 22weeks (including post-removal healing time of 4weeks), and a control animal was euthanized at 8weeks after implantation without orthodontic force application. The appliance and the surrounding tissue were studied radiographically, macroscopically, and histologically. The results were as follows: 1. The lateral radiographs taken after euthanasia showed very slight displacement of the vortical plate in the experimental animals, compared with the control animal. Mobility test of all animals confirmed primary stability without any increase of mobility during experimental period. 2. No pathologic changes were found in the healing condition of covering soft tissue and bone-screw interface in experimental animals as well as a control animal. 3. Osseointegration was achieved in the bone-screw interface in 8weeks after implantation and the amount of osseointegration increased in 18weeks. There was little difference of osseointegration between the compression side and the tension side. 4. In the marginal bone area, slight bone apposition and resorption were found regardless of compression and tension side, while there was no change in the control animal. 5. Both 8week-animal and 18week-animal showed the new bone apposition along the surface of screws which were perforated into the nasal cavity, while the control animal showed no change. 6. After 4weeks of plate removal, the covering epithelium was repaired intactly, while the connective tissue showed loose and irregular rearrangement and the connective tissue capsule remained. The C-Palatal $Plate^{TM}$ manifested sufficient anchorage capacity in the context of histological study as well as clinical outcomes, when immediate orthodontic force was applied after implantation.

Minimization of Small Bowel Volume within Treatment Fields Using Customized Small Bowel Displacement System(SBDS) (골반부 방사선 조사야 내의 소장 용적을 줄이기 위한 Small Bowel Displacement System(SBDS)의 사용)

  • Lim Do Hoon;Huh Seung Jae;Ahn Yong Chan;Kim Dae Yong;Wu Hong Gyun;Kim Moon Kyung;Choi Dong Rak;Shin Kyung Hwan
    • Radiation Oncology Journal
    • /
    • v.15 no.3
    • /
    • pp.263-268
    • /
    • 1997
  • Purpose : Authors designed a customized Small Bowel Displacement System (SBDS) to displace the small bowel from the Pelvic radiation fields and minimize treatment-related bowel morbidities. Materials and Methods : From August 1995 to Mar 1996. 55 consecutive patients who received pelvic radiation therapy with the SBDS were included in this study. The SBDS consists of a customized styrofoam compression device which can displace the small bowel from the radiation fields and an individualized immobilization abdominal board for easy daily setup in prone position After opacifying the small bowel with Barium3, the patients were laid Prone and posterior-anterior (PA) and lateral (LAT) simulation films were taken with and without the SBDS. The areas of the small bowel included in the radiation fields with and without the SBDS were compared. Results : Using the SBDS, the mean small bowel area was reduced by $59\%;on\;PA\;and\;51\%$ on LAT films (P=0.0001). In six Patients (6/55. $11\%$), it was Possible that no small bowel was included within the treatment fields. The mean upward displacement of the most caudal small bowel was 4.8 cm using the SBDS. Only $15\%$ (8/55) of patients treated with the SBDS manifested diarrhea requiring medication. Conclusion : The SBDS is a novel method that can be used to displace the small bowel away from the treatment portal effectively and reduce the radiation therapy morbidities. Compliance with setup is excellent when the SBDS is used.

  • PDF

Geometry and Kinematics of the Northern Part of Yeongdeok Fault (영덕단층 북부의 기하와 운동학적 특성)

  • Gwangyeon Kim;Sangmin Ha;Seongjun Lee;Boseong Lim;Min-Cheol Kim;Moon Son
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.1
    • /
    • pp.55-72
    • /
    • 2023
  • This study aims to identify the fault zone architecture and geometric and kinematic characteristics of the Yeongdeok Fault, based on the geometry and kinematic data of various structural elements obtained by detailed field survey and anisotropy of magnetic susceptibility (AMS) of the fault rocks. The Yeongdeok Fault extends from Opo-ri, Ganggu-myeon, Yeongdeok-gun to Gilgok-ri, Maehwa-myeon and Bangyul-ri, Giseong-myeon, Uljin-gun, and cuts various rock types from the Paleo-proterozoic to the Mesozoic with a range of 4.6-5.0 km (4.77 km in average) of right-lateral offset or forms the rock boundaries. The fault is divided into four segments based on its geometric features and shows N-S to NNW strikes and dips of an angle of ≥ 54° to the east at most outcrops, even though the outcrops showing the westward dipping (a range of 54°-82°) of fault surface increase as it goes north. The Yeongdeok Fault shows the difference in the fault zone architecture and in the fault core width ranging from 0.3 to 15 m depending on the bedrock type, which is interpreted as due to differences in the physical properties of bedrock such as ductility, mineral composition, particle size, and anisotropy. Combining the results of paleostress reconstruction and AMS in this and previous studies, the Yeongdeok Fault experienced (1) sinistral strike-slip under NW-SE maximum horizontal principle stress (σHmax) and NE-SW minimum horizontal principle stress (σHmin) in the late Cretaceous to early Cenozoic, and then (2) dextral strike-slip under NE-SW maximum horizontal principle stress (σHmax) and NW-SE minimum horizontal principle stress (σHmin) in the Paleogene. It is interpreted that the deformation caused by the Paleogene dextral strike-slip movement was the most dominant, and the crustal deformation was insignificant thereafter.