• Title/Summary/Keyword: lateral bracing system

Search Result 59, Processing Time 0.021 seconds

Seismic response analysis of mega-scale buckling-restrained bracing systems in tall buildings

  • Gholipour, Mohammadreza;Mazloom, Moosa
    • Advances in Computational Design
    • /
    • v.3 no.1
    • /
    • pp.17-34
    • /
    • 2018
  • Tall buildings are categorized as important structures because of the large number of occupants and high construction costs. The choice of competent lateral load resisting systems in tall buildings is of crucial importance. Bracing systems have long been an economic and effective method for resisting lateral loads in steel structures. However, there are some potential adverse aspects to bracing systems such as the limitations they inflict on architectural plans, uplift forces and poor performances in compression. in order to eliminate the mentioned problems and for cost optimization, in this paper, six 20-story steel buildings and frames with different types of bracing, i.e., conventional, mega-scale and buckling-restrained bracing (BRB) were analyzed. Linear and modal push-over analyses were carried out. The results pointed out that Mega-Scale Bracing (MSB) system has significant superiority over the conventional bracing type. The MSB system is 25% more economic. Some other advantages of MSB include: up to 63% less drift ratio, up to 38% better performance in lateral displacement, up to 100% stiffer stories, and about 50% smaller uplift forces. Moreover, MSB equipped with BRB attests even a better seismic behavior in the aforementioned parameters.

Enhancing seismic performance of ductile moment frames with delayed wire-rope bracing using middle steel plate

  • Ghalandari, Akram;Ghasemi, Mohammad Reza;Dizangian, Babak
    • Steel and Composite Structures
    • /
    • v.28 no.2
    • /
    • pp.139-147
    • /
    • 2018
  • Moment frames have considerable ductility against cyclic lateral loads and displacements; however, sometimes this feature causes the relative displacement to exceed the permissible limits. This issue can bring unfavorable hysteretic behavior on the frame due to the reduction in the stiffness and resistance against lateral loads. Most of common bracing systems usually control lateral displacements through increasing stiffness while result in decreasing the capacity for energy absorption. This has direct effect on hysteresis curves of moment frames. Therefore, a system that is capable of both having the capacity of energy absorption as well as controlling the displacements without a considerable increase in the stiffness is quite important. This paper investigates retrofitting of a single-storey steel moment frame using a delayed wire-rope bracing system equipped with the ductile middle steel plate. The steel plate is considered at the middle intersection of wire ropes, where it causes cables to be continuously in tension. This integrated system has the advantage of reducing considerable stiffness of the frame compared to cross bracing systems as a result of which it could also preserve the frame's energy absorption capacity. In this paper, FEM models of a delayed wire-rope bracing system equipped by steel plates with different geometries have been studied, validated, and compared with other researchers' laboratory test results.

Influence of Lateral Bracing on Lateral Buckling of Short I-Beams Under Repeated Loadings (반복하중을 받는 짧은 I형 보의 횡좌굴에 대한 횡브레이싱의 영향에 관한 고찰)

  • 이상갑
    • Computational Structural Engineering
    • /
    • v.5 no.1
    • /
    • pp.109-118
    • /
    • 1992
  • Lateral bracing has long been used in design practice to enhance the carrying capacity of the lateral buckling of the beam. Many factors, critically important to lateral bracing performance, do not appear in design formulas. Some of these factors are discussed in this study for the application to short I - beams under repeated loadings through parametric studies with an analytical model : the brace location along the length of the beam, the height of the bracing above the shear center of the beam, and the strength and stiffness of the brace. The parametric studies are carried out using a propped cantilever arrangement, and also using a geometrically (fully) nonlinear beam model for the brace as well as the beam to capture the system buckling. An idealized bracing system is configured to restrain lateral motion, but not rotation. A multiaxial cyclic plasticity model is also implemented to better represent cyclic metal plasticity in conjunction with a consistent return mapping algorithm.

  • PDF

After-fracture redundancy in simple span two-girder steel bridge

  • Park, Yong-Myung;Joe, Woom-Do-Ji;Hwang, Min-Oh;Yoon, Tae-Yang
    • Structural Engineering and Mechanics
    • /
    • v.27 no.6
    • /
    • pp.651-670
    • /
    • 2007
  • An experimental study to evaluate a redundancy capacity in simple span two plate-girder bridges, which are generally classified as a non-redundant load path structure, has been performed under the condition that one of the two girders is seriously damaged. The bottom lateral bracing was selected as an experimental parameter and two 1/5-scale bridge specimens with and without bottom lateral bracing have been prepared. The loading tests were first performed on the intact specimens without cracked girder within elastic range. Thereafter, the ultimate loading tests were conducted on the damaged specimens with an induced crack at the center of a girder. The test results showed that the cross beams and concrete deck redistributed partly the applied load to the uncracked girder, but the lateral bracing system played a significant role of the load redistribution when a girder was damaged. The redundancy was evaluated based on the test results and an appropriate redundancy level was evaluated when the lateral bracing was provided in a seriously damaged simple span two-girder steel bridge.

Effects of near-fault loading and lateral bracing on the behavior of RBS moment connections

  • Yu, Qi-Song Kent;Uang, Chia-Ming
    • Steel and Composite Structures
    • /
    • v.1 no.1
    • /
    • pp.145-158
    • /
    • 2001
  • An experimental study was conducted to evaluate the effects of loading sequence and lateral bracing on the behavior of reduced beam section (RBS) steel moment frame connections. Four full-scale moment connections were cyclically tested-two with a standard loading history and the other two with a near-fault loading history. All specimens reached at least 0.03 radian of plastic rotation without brittle fracture of the beam flange groove welds. Two specimens tested with the nearfault loading protocol reached at least 0.05 radian of plastic rotation, and both experienced smaller buckling amplitudes at comparable drift levels. Energy dissipation capacities were insensitive to the types of loading protocol used. Adding a lateral bracing near the RBS region produced a higher plastic rotation; the strength degradation and buckling amplitude were reduced. A non-linear finite element analysis of a one-and-a-half-bay beam-column subassembly was also conducted to study the system restraint effect. The study showed that the axial restraint of the beam could significantly reduce the strength degradation and buckling amplitude at higher deformation levels.

On the characteristics and seismic study of Hat Knee Bracing system, in steel structures

  • JafarRamaji, Issa;Mofid, Massood
    • Steel and Composite Structures
    • /
    • v.13 no.1
    • /
    • pp.1-13
    • /
    • 2012
  • In this study, a new structural bracing system named 'Hat Knee Bracing' (HKB) is presented. In this structural system, a special form of diagonal braces, which is connected to the knee elements instead of beam-column joints, is investigated. The diagonal elements provide lateral stiffness during moderate earthquakes. However the knee elements, which is a fuse-like component, is designed to have one plastic joint in the knee elements for dissipation of the energy caused by strong earthquake. First, a suitable shape for brace and knee elements is proposed through elastic studying of the system and several practical parameters are established. Afterward, by developing applicable and highly accurate models in Drain-2DX, the inelastic behavior of the system is carefully considered. In addition, with inelastic study of the new bracing system and comparison with the prevalent Knee Bracing Frame system (KBF model) in nonlinear static and dynamic analysis, the seismic behavior of the new bracing system is reasonably evaluated.

Effects of Lateral Bracing on the Load Distribution and Torsional Behaviors in Continuous Two-Girder Bridges (연속 2-거더교에서 수평브레이싱이 하중 분배 및 비틂 거동에 미치는 영향)

  • Hwang, Min Oh;Yoon, Tae Yang;Park, Yong Myung;Joe, Woom Do Ji;Hwang, Soon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.671-680
    • /
    • 2007
  • In this study, we performed a loading test to evaluate the effect of load distribution on continuous two-span plate-girder bridges with or without bottom lateral bracing using one-fifth-scale bridge specimens. From the test results, when specimens with lateral bracing were loaded eccentrically, the load distribution capacity of the concrete deck and cross beam improved and greater loading was distributed to the other side of the girder subjected to loading. The load distribution rate of the specimens with and without lateral bracing system was evaluated from the analytical model that was verified by the test results. From the result of the quantitative evaluation, when specimen without lateral bracing was loaded eccentrically, mostly 21% of loading according to the concrete deck was distributed to the other side of the girder subjected to loading. However, when specimen with lateral bracing was loaded eccentrically, the load distribution rate increased by 1.7 times as all cross beams, bracing and concrete deck participated in load distribution. The reason is that the torsional rigidity increased as the model with lateral bracing behaved like a pseudo-closed box section.

Topology optimization of bracing systems using a truss-like material model

  • Zhou, Kemin
    • Structural Engineering and Mechanics
    • /
    • v.58 no.2
    • /
    • pp.231-242
    • /
    • 2016
  • To minimize the compliance of frame, a method to optimize the topology of bracing system in a frame is presented. The frame is first filled uniformly with a truss-like continuum, in which there are an infinite number of members. The frame and truss-like continuum are analysed by the finite element method altogether. By optimizing the distribution of members in the truss-like continuum over the whole design domain, the optimal bracing pattern is determined. As a result, the frame's lateral stiffness is enforced. Structural compliance and displacement are decreased greatly with a smaller increase in material volume. Since optimal bracing systems are described by the distribution field of members, rather than by elements, fewer elements are needed to establish the detailed structure. Furthermore, no numerical instability exists. Therefore it has high calculation effectiveness.

Experimental Study on the Top- Lateral Bracing of U-Type Steel Box Girders Using Real Size Specimen: Torsional Stiffness (실물모형 시험를 이용한 U형 강박스거더의 상부 수평브레이싱에 관한 실험적 연구: 비틂강성)

  • Shim, Nak Hoon;Park, Young Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.4
    • /
    • pp.447-456
    • /
    • 2006
  • In this study, a torsional test for U-type steel box girders was performed to observe the effects of the kind of panel for top lateral walateral bracings on the torsional behavior of the U-type steel girder system. For the structural tests, the test specimen with a two-thirds scale of the system actually constructed in the field was used. In the torsional test to observe the efects of top lateral bracings, the most economical arrangement of the top lateral bracing was found to be the panel width to length ratio of 1:1.5 with the inclined angle of $40^{\circ}$.

An Experiment on Redundancy in Continuous Span Two-Girder Bridge - Effects of Lateral Bracing (연속 2-거더교의 여유도 평가 실험 - 수평브레이싱의 효과)

  • Park, Yong-Myung;Joe, Woom-Do-Ji;Hwang, Min-Oh;Yoon, Tae-Yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.417-429
    • /
    • 2008
  • This paper presents an experimental result to evaluate the redundancy in continuous span two plate-girder bridges which are generally classified as a non-redundant load path structure. The experiments were performed when one of the two girders is seriously cracked. To estimate the effects of bottom lateral bracing on the redundancy, the experiment variable was considered as the bottom lateral bracing, and two 1/5-scaled bridge specimens with and without lateral bracing system were fabricated. The ultimate loading tests were conducted on the damaged specimens with an induced crack at a girder in the side span. The test results showed that the load carrying capacity of damaged specimen with bracing was about 1.2 times higher than that without bracing. To evaluate the redundancy in each specimen, numerical analysis was performed to calibrate the difference of dead load between the actual bridge and the test specimens. When the dead load calibration is considered, the results showed that a continuous span two-girder bridges have a reasonable redundancy even without lateral bracing. Especially, the level of redundancy is increased by about 1.8 times when the lateral bracing is provided.