• Title/Summary/Keyword: late Miocene

Search Result 59, Processing Time 0.026 seconds

PALYNOLOGICAL ASSEMBLAGES FROM LATE CRETACEOUS TO TERTIARY DEPOSITS OF KACHI-I WELL, BLOCK II, YELLOW SEA BASIN, KOREA

  • YI Sangheon
    • 한국석유지질학회:학술대회논문집
    • /
    • spring
    • /
    • pp.1-11
    • /
    • 1997
  • Thirty one samples from Late Cretaceous and Tertiary interval sections (468-783m) of the Kachi-I Well in Block II, Yellow Sea Basin, have been analysed for their terrestrially derived palynofloras. The systematic study of the palynomorphs recovered has yielded one hundred and fifty-five taxa; forty-three species of spores belonging to twenty-eight genera, seventy-seven pollen assignable to forty-three genera, and twenty-seven species assignable to fifteen genera and eight fungal remains. The results of both qualitative and quantitative analysis propose a succession of eight terrestrial palynomorph associations. Seven associations are erected in Late Maastrichtian and one in Early to Middle Miocene. Age determinations are on the basis of palynomorph taxa alone for the all associations. The Late Cretaceous/Tertiary unconformity is recognised at between 603 and 613m, based on the palynological data. The sedimentary basin during the Late Cretaceous seem to be lowland shallow marginal lacustrine with stagnant, mesotrophic conditions. On the other hand, the basin during the Early-Middle Miocene is considered to have been characterised by lowland swamp areas. The palaeoclimatic conditions during the Late Cretaceous are considered to be humid tropical to subtropical, while during the Early to Middle Miocene they are considered to be warm temperate with humid conditions. A comparison of palynomorph assemblages between the present study and the previous studies of Late Cretaceous in Circum-Pacific Northern Hemisphere is made, These assemblages reveal that lower sections (612-783m) of the Kachi-I well belong to the Late Cretaceous Aquilapollenites province of Herngreen and Chlonova (1981) and Srivastava (1981, 1994).

  • PDF

Stratigraphy of the Central Sub-basin of the Gunsan Basin, Offshore Western Korea (한국 서해 대륙붕 군산분지 중앙소분지의 층서)

  • Kim, Kyung-min;Ryu, In-chang
    • Economic and Environmental Geology
    • /
    • v.51 no.3
    • /
    • pp.233-248
    • /
    • 2018
  • Strata of the Central sub-basin in the Gunsan Basin, offshore, western Korea were analyzed by using integrated stratigraphy approach. As a result, five distinct unconformity-bounded units are recognized in the basin: Sequence I (Cretaceous or older(?)), Sequence II (Late Cretaceous), Sequence III (late Late Cretaceous or younger(?)), Sequence IV (Early Miocene or older(?)), Sequence V (Middle Miocene). Since the late Late Jurassic, along the Tan-Lu fault system wrench faults were developed and caused a series of small-scale strike-slip extensional basins. The sinistral movement of wrench faults continued until the Late Cretaceous forming a large-scale pull-apart basin. However, in the Early Tertiary, the orogenic event, called the Himalayan Orogeny, caused basin to be modified. From Late Eocene to Early Miocene, tectonic inversion accompanied by NW strike folds occurred in the East China. Therefore, the late Eocene to Oligocene was the main period of severe tectonic modification of the basin and Oligocene formation is hiatus. The rate of tectonic movements in Gunsan Basin slowed considerably. In that case, thermal subsidence up to the present has maintained with marine transgressions, which enable this area to change into the land part of the present basin.

PRELIMINARY INTERPRETATION OF DEPOSITIONAL ENVIRONMENT AND GEOLOGICAL STRUCTURE OF THE JEJU BASIN IN THE SOUTH SEA OF KOREA (남해 제주분지 해역의 퇴적환경 및 지질구조 예비 해석)

  • SikHuh;DongLimChoi;HaiSooYoo;DongJuMin;JongKukHong;KwangJaLee
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.3
    • /
    • pp.225-232
    • /
    • 2004
  • To investigate the depositional environment and the geological structure of the Jeju Basin in the South Sea of Korea, we acquired 54-channel seismic data of about 1,980 line-km. The study area lies at the northeastern part of the East China Sea Trough, a Tertiary back-arc basin. The sedimentary basin formed by rifted activities resulted in the formation of graben and/or half-graben structures. The basin is composed of pre-rift, syn-rift and post-rift sediments bounded by regional unconformity. The pre-rift and syn-rift sediments consist of Oligocene, Early and Middle Miocene sequence, whereas the post-rift sediments consist of Late Miocene and Plio-Pleistocene sequences. Seismic and well data from the Jeju Basin indicate that Oligocene-Miocene sediments were deposited under fluvial and lacustrine depositional conditions. Following compressional tectonic movements in the Late Miocene time and a subsequent period of erosion, regional subsidence during the Pliocene time brought the Jeju Basin under marine conditions, resulting in the deposition of dominantly marine sediments.

  • PDF

Basin modelling with a MATLAB-based program, BasinVis 2.0: A case study on the southern Vienna Basin, Austria (MATLAB 기반의 프로그램 BasinVis 2.0을 이용한 분지 모델링: 오스트리아 비엔나 분지의 남부 지역에 대한 사례 연구)

  • Lee, Eun Young;Wagreich, Michael
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.6
    • /
    • pp.615-630
    • /
    • 2018
  • Basin analysis is a research field to understand the formation and evolution of sedimentary basins. This task requires various geoscientific datasets as well as numerical and graphical modelling techniques to synthesize results dimensionally in time and space. For basin analysis and modelling in a comprehensive workflow, BasinVis 1.0 was released as a MATLAB-based program in 2016, and recently the software has been extended to BasinVis 2.0, with new functions and revised user-interface. As a case study, this work analyses the southern Vienna Basin and visualizes the sedimentation setting and subsidence evolution to introduce the basin modelling functions of BasinVis 2.0. This is a preliminary study for a basin-scale modelling of the Vienna Basin, together with our previous studies using BasinVis 1.0. In the study area, during the late Early Miocene, sedimentation and subsidence are significant along strike-slip and en-echelon listric normal faults. From the Middle Miocene onwards, however, subsidence decreases abruptly over the area and this situation continues until the Late Miocene. This is related to the development of the pull-apart system and corresponds to the episodic tectonic subsidence in strike-slip basins. The subsidence of the Middle Miocene is confined mainly to areas along the strike-slip faults, while, from the late Middle Miocene, the depocenter shifts to a depression along the N-S trending listric normal faults. This corresponds to the regional paleostress regime transitioning from NE-SW trending transtension to E-W trending extension. This study applies various functions and techniques to this case study, and the modelled results demonstrate that BasinVis 2.0 is effective and applicable to the basin modelling.

Petrology on the Late Miocene Basalts in Goseong-gun, Gangwon Province (강원도 고성군 일대의 후기 마이오세 현무암의 암석학적 연구)

  • Koh Jeong Seon;Yun Sung-Hyo
    • Journal of the Korean earth science society
    • /
    • v.26 no.1
    • /
    • pp.78-92
    • /
    • 2005
  • Petrographical and petrochemical analyses for late Miocene basalts in Goseong-gun area. Gangwon province, were carried out to interpret the characteristics and the origin of magma. The basaltic rocks occurred as plug-dome in the summit of several small mountain and developed columnar jointing with pyroxene-megacryst bearing porphyritic texture. And the basalt contains xenoliths of biotite granite (basement rocks), gabbro (lower crustal origin) and Iherzolite(upper mantle origin). The basalts belong to the alkaline basalt field in TAS diagram and partly belong to picrobasalt and trachybasalt field. On the tectonomagmatic discrimination diagram f3r basalt in the Goseong-gun area. they fall into the fields for the within plate and oceanic island basalt. The characteristics of trace elements and REEs shows that primary magma for the basalt magma would have been derived from partial melting of garnet-peridotite mantle. This late Miocene basalt volcanism is related to the hot spot within the palte.

Discussion on the Late Miocene Biogenic Opal Crash in the Andaman Sea (마이오세 후기 안다만해에서 생물기원 오팔 함량의 폭감에 대한 논의)

  • LEE, JONGMIN;KIM, SUNGHAN;KHIM, BOO-KEUN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • Biogenic opal crash at about 6.7 Ma was identified at both IODP Site U1447 and NGHP Site 17 in the Andaman Sea. The different biogenic opal content and general variation pattern between two sites may be attributed to the different concentration of analytical reagent and sedimentation rate estimated by the different chronological approaches. Nevertheless, this study suggests that the biogenic opal crash in the Andaman Sea is closely related to the restriction of Indonesian Throughflow and to the decreasing strength of Indian summer monsoon during the late Miocene, both of which resulted in the reduction of nutrient supply.

Paleomagnetic Study on the Tertiary Rocks in Pohang Area (포항일원에 분포하는 제3기 암류에 대한 고지자기 연구)

  • Min, Kyung Duck;Kim, Won Kyun;Lee, Dae Ha;Lee, Youn Soo;Kim, In Su;Lee, Young-Hoon
    • Economic and Environmental Geology
    • /
    • v.27 no.1
    • /
    • pp.49-63
    • /
    • 1994
  • Paleomagnetic study of Tertiary rocks in Pohang area has been carried out to determine the characteristic directon of natural remanent magnetization, the position of paleomagnetic pole, the stratigraphic correlation, and the tectonic movement. A total of 196 specimens was collected from 5 sites in the Pohang Basin, 19 sites in the Janggi Basin, and 10 sites in the Eoil Basin, respectively. The mean declination and inclination of 4 sites (3 sites in the Yonil Group and 1 site in the Yonil Basalt) are $-3.2^{\circ}$ and $54.3^{\circ}$, and yield the paleomagnetic pole position $86.9^{\circ}N$ and $7.7^{\circ}E$. These are the characteristic direction and pole position of Miocene Epoch by comparison with contemporary Eurasian and Chinese data. The characteristic direction and pole position of remaining 30 sites are $47.6^{\circ}$ and $57.5^{\circ}$, and $52.3^{\circ}N$ and $201.5^{\circ}E$, respectively. These show clockwise rotation of $50.8^{\circ}$ with respect to the Miocene ones resulted by a tectonic movement before the deposition of the Hakjeon Formation of the Yonil Group about 15~16 Ma in the study area. The mechanism of the clockwise rotation is considered to be the dextral movement of the Yangsan Fault presumably caused by the opening of the East Sea. The Yonil Basalt is reclassified into pre- and post-deposition of the Yonil Group, i.e. the former is early Miocene and the latter late Miocene.

  • PDF

Cenozoic Geological Structures and Tectonic Evolution of the Southern Ulleung Basin, East Sea(Sea of Japan) (동해 울릉분지 남부해역의 신생대 지질구조 및 지구조 진화)

  • Choi Dong-Lim;Oh Jae-Kyung;Mikio SATOH
    • The Korean Journal of Petroleum Geology
    • /
    • v.2 no.2 s.3
    • /
    • pp.59-70
    • /
    • 1994
  • The Cenozoic geological structures and the tectonic evolution of the southern Ulleung Basin were studied with seismic profiles and exploration well data. Basement structure of the Korea Strait is distinctly characterized by normal faults trending northeast to southwest. The normal faults of the basement are most likely related to the initial liking and extensional tectonics of Ulleung Basin. Tsushima fault along the west coast of Tsushima islands runs northeastward to the central Ulleung Basin. The Middle Miocene and older sequences in the Tsushima Strait show folds and faults mostly trending northeast to southwest. These folds and faults may be interpreted as a result of compressional tectonics. The Late Miocene to Qauternary sequences are not much deformed, but numerous faults mostly N-S trending are dominated in the Tsushima Strait. The Ulleung Basin was in intial rifting during Oligocene, and then active extension and subsidence from Early to early Middle Miocene. Therefore SW Japan separated from Korea Peninsula and drifted toward southeast, and Ulleung Basin was formed as a pull-apart basin under dextral transtensional tectonic regime. During rifting and extensional stage, Tsushima fault as a main tectonic line separating SW Japan block from the Korean Peninsula acted as a normal faulting with right-lateral strike-slip motion as SW Japan drifted southeastward. During middle Middle Miocene to early Late Miocene, the opening of Ulleung basin stopped and uplifted due to compressional tectonics. The southwest Japan block converging on the Korean Peninsula caused compressional stress to the southern margin of Ulleung Basin, resulting in strong deformation under sinistral transpressional tectonic regime. Tsushima fault acted as thrust fault with left-lateral strike-slip motion. From middle Late Miocene to Quaternary, the southern margin of Ulleung Basin has been controlled by compressional motion. Thus the Tsushima fault still appears to be an active thrust fault by compressional tectonic regime.

  • PDF

High-resolution Seismic Imaging of Shallow Geology Offshore of the Korean Peninsula: Offshore Uljin (신기 지구조운동의 해석을 위한 한반도 근해 천부지질의 고해상 탄성파 탐사: 울진 주변해역)

  • Kim, Han-Joon;Jou, Hyeong-Tae;Yoo, Hai-Soo;Kim, Kwang-Hee;You, Lee-Sun
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.2
    • /
    • pp.127-132
    • /
    • 2011
  • We acquired and interpreted more than 650 km of high-resolution seismic reflection profiles in the Hupo Basin, offshore east coast of Korea at $37^{\circ}N$ in the East Sea (Japan Sea) to image shallow and basement deformation. The seismic profiles reveal that the main depocenter of the Hupo Basin in the study area is bounded by the large offset Hupo Fault on the east and an antithetic fault on the west; however, the antithetic fault is much smaller both in horizontal extension and in vertical displacement than the Hupo Fault. Sediment infill in the Hupo Basin consists of syn-rift (late Oligocene. early Miocene) and post-rift (middle Miocene.Holocene) units. The Hupo Fault and other faults newly defined in the Hupo Basin strike dominantly north and show a sense of normal displacement. Considering that the East Sea has been subjected to compression since the middle Miocene, we interpret that these normal faults were created during continental rifting in late Oligocene to early Miocene times. We suggest that the current ENE direction of maximum principal compressive stress observed in and around the Korean peninsula associated with the motion of the Amurian Plate induces the faults in the Hupo Basin to have reverse and right-lateral, strike-slip motion, when reactivated. A recent earthquake positioned on the Hupo Fault indicates that in the study area and possibly further in the eastern Korean margin, earthquakes would occur on the faults created during continental rifting in the Tertiary.

Interpretation of Seismic Profiles in the Sora and North Sora Sub-basins, South Sea of Korea (남해 소라 및 북소라 소분지 일대의 탄성파단면 해석)

  • Lee, Sung-Dong;Oh, Jin-Yong;Park, Myong-Ho;Chang, Tae-Woo
    • The Korean Journal of Petroleum Geology
    • /
    • v.14 no.1
    • /
    • pp.63-73
    • /
    • 2008
  • The seismic interpretation was carried out to understand the evolution of the Sora and North Sora Sub-basins, South Sea of Korea. Both sub-basins belong to the Domi Basin, which is located in the northeastern margin of East China Sea Basin with Fukue Basin of Japan. Age assignment of each strata in this study was based on the data of boreholes and seismic interpretation in NW Japan. Four regional horizons were identified, and five geological units; Y(basement), Q(Eocene$\sim$Middle Oligocene), M(Middle Oligocene$\sim$Early Miocene), L(Early Miocene$\sim$Late Miocene) and D(Late Miocene$\sim$Present) groups in ascending order. Structural trends of the main boundary faults and the basin-fill sediment are different between the Sora and North Sora Sub-basins; i.e., trend of the main boundary-faults, dip of horizons, distribution of basin and development of growth fault. These results imply that the Sora Sub-basin would have opened earlier than the North Sora Sub-basin.

  • PDF