Browse > Article
http://dx.doi.org/10.14770/jgsk.2018.54.6.615

Basin modelling with a MATLAB-based program, BasinVis 2.0: A case study on the southern Vienna Basin, Austria  

Lee, Eun Young (Faculty of Earth System and Environmental Sciences, Chonnam National University)
Wagreich, Michael (Department of Geodynamics and Sedimentology, University of Vienna)
Publication Information
Journal of the Geological Society of Korea / v.54, no.6, 2018 , pp. 615-630 More about this Journal
Abstract
Basin analysis is a research field to understand the formation and evolution of sedimentary basins. This task requires various geoscientific datasets as well as numerical and graphical modelling techniques to synthesize results dimensionally in time and space. For basin analysis and modelling in a comprehensive workflow, BasinVis 1.0 was released as a MATLAB-based program in 2016, and recently the software has been extended to BasinVis 2.0, with new functions and revised user-interface. As a case study, this work analyses the southern Vienna Basin and visualizes the sedimentation setting and subsidence evolution to introduce the basin modelling functions of BasinVis 2.0. This is a preliminary study for a basin-scale modelling of the Vienna Basin, together with our previous studies using BasinVis 1.0. In the study area, during the late Early Miocene, sedimentation and subsidence are significant along strike-slip and en-echelon listric normal faults. From the Middle Miocene onwards, however, subsidence decreases abruptly over the area and this situation continues until the Late Miocene. This is related to the development of the pull-apart system and corresponds to the episodic tectonic subsidence in strike-slip basins. The subsidence of the Middle Miocene is confined mainly to areas along the strike-slip faults, while, from the late Middle Miocene, the depocenter shifts to a depression along the N-S trending listric normal faults. This corresponds to the regional paleostress regime transitioning from NE-SW trending transtension to E-W trending extension. This study applies various functions and techniques to this case study, and the modelled results demonstrate that BasinVis 2.0 is effective and applicable to the basin modelling.
Keywords
BasinVis 2.0; basin analysis; basin modelling; subsidence; Vienna Basin;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Einsele, G., 2000, Sedimentary basins. Evolution, facies, and sediment budget. Springer, Berlin, 792 p.
2 Fodor, L., 1995, From transpression to transtension:Oligocene-Miocene structural evolution of the Vienna basin and the East Alpine-Western Carpathian junction. Tectonophysics, 242, 151-182.   DOI
3 Gardner, G.H.F., Gardner, L.W. and Gregory, A.R., 1974, Formation velocity and density-the diagnostic basics for stratigraphic traps. Geophysics, 39, 770-780.   DOI
4 Haq, B.U., Hardenbol, J. and Vail, P.R., 1987, Chronology of fluctuating sea levels since the Triassic. Science, 235, 1156-1167.   DOI
5 Harzhauser, M., Mandic, O., Kranner, M., Lukeneder, P., Kern, A.K., Gross, M., Carnevale, G. and Jawecki, C., 2018, The Sarmatian/Pannonian boundary at the western margin of the Vienna Basin (City of Vienna, Austria). Austrian Journal of Earth Sciences, 111, 1-26.   DOI
6 Harzhauser, M., Theobalt, D., Strauss, P., Mandic, O. and Piller, W.E., in press, Seismic-based lower and middle Miocene stratigraphy in the northwestern Vienna Basin (Austria). Newsletters on Stratigraphy.
7 Hinsch, R., Decker, K. and Peresson, H., 2005, 3-D seismic interpretation and structural modeling in the Vienna Basin: implications for Miocene to recent kinematics. Austrian Journal of Earth Sciences, 97, 38-50.
8 Hohenegger, J., Coric, S. and Wagreich, M., 2014, Timing of the Middle Miocene Badenian Stage of the Central Paratethys. Geologica Carpathica, 65, 55-66.   DOI
9 Holzel, M., 2009, Quantification of tectonic movement in the Vienna Basin. Ph.D. thesis, University of Vienna, Vienna, Austria, 136 p.
10 Holzel, M., Decker, K., Zamolyi, A., Strauss, P. and Wagreich, M., 2010, Lower Miocene structural evolution of the central Vienna Basin (Austria). Marine and Petroleum Geology, 27, 666-681.   DOI
11 Huismans, R.S., Podladchikov, Y.Y. and Cloetingh, S., 2001, Dynamic modelling of the transition from passive to active rifting, application to the Pannonian Basin. Tectonics, 20, 1021-1039.   DOI
12 Allen, P.A. and Allen, J.R., 2013, Basin Analysis: Principles and Application to Petroleum Play Assessment, 3rd ed. Wiley-Blackwell, Oxford, 642 p.
13 Arzmuller, G., Buchta, S., Ralbovský, E. and Wessely, G., 2006, The Vienna Basin. In: Golonka, J. and Picha, F.J. (eds.), AAPG Memoir 84: The Carpathians and Their Foreland: Geology and Hydrocarbon Resources. AAPG, Tulsa, 191-204.
14 Athy, L.F., 1930, Density, porosity, and compaction of sedimentary rocks. AAPG Bulletin, 14, 1-24.
15 Holzel, M., Wagreich, M., Faber, R. and Strauss, P., 2008, Regional subsidence analysis in the Vienna Basin (Austria). Austrian Journal of Earth Sciences, 101, 88-98.
16 Horvath, F., 1993, Towards a mechanical model for the formation of the Pannonian basin. Tectonophysics, 226, 333-357.   DOI
17 Miall, A.D., 2000, Principles of sedimentary basin analysis. Springer, Berlin, 616 p.
18 Leeder, M., 2011, Sedimentology and sedimentary basins:from turbulence to tectonics. Wiley, Chichester, 784 p.
19 Li, J. and Heap, A., 2008, A review of spatial interpolation methods for environmental scientists. Geoscience Australia Record 2008/23, Canberra, 137 p.
20 Mann, P., Hempton, M.R., Bradley, D.C. and Burke, K., 1983, Development of pull-apart basins. Journal of Geology, 91, 529-554.   DOI
21 Ori, G.G. and Friend, P.F., 1984, Sedimentary basins formed and carried piggyback on active thrust sheets. Geology, 12, 475-478.   DOI
22 Peresson, H. and Decker, K., 1997a, Far-field effects of Late Miocene subduction in the Eastern Carpatians:E-W compression and inversion of structures in the Alpine-Carpathian-Pannonian region. Tectonics, 16, 38-56.   DOI
23 Peresson, H. and Decker, K., 1997b, The Tertiary dynamics of the northern Eastern Alps (Austria): changing palaeostresses in a collisional plate boundary. Tectonophysics, 272, 125-157.   DOI
24 Piller, W.E., Harzhauser, M. and Mandic, O., 2007, Miocene Central Paratethys stratigraphy - current status and future directions. Stratigraphy, 4, 151-168.
25 Plasienka, D., Grecula, P., Putis, M., Kovac, M. and Hovorka, D., 1997, Evolution and structure of the Western Carpathians: an overview. In: Grecula, P., Hovorka, D. and Putis, M. (eds.), Geological evolution of the Western Carpathians. Mineralia Slovaca - Monograph, Bratislava, 1-24.
26 Cressie, N., 1988, Spatial prediction and ordinary kriging. Mathematical Geology, 20, 405-421.   DOI
27 Beidinger, A. and Decker, K., 2011, 3D geometry and kinematics of the Lassee flower structure: Implications for segmentation and seismotectonics of the Vienna Basin strike-slip fault, Austria. Tectonophysics, 499, 22-40.   DOI
28 Beidinger, A. and Decker, K., 2014, Quantifying Early Miocene in-sequence and out-of-sequence thrusting at the Alpine-Carpathian junction. Tectonics, 33, 222-252.   DOI
29 Bond, G.C. and Kominz, M.A., 1984, Construction of tectonic subsidence curves for the early Paleozoic miogeocline, southern Canadian rocky mountains: implications for subsidence mechanisms, age of breakup, and crustal thinning. Geological Society of America Bulletin, 95, 155-173.   DOI
30 Cressie, N., 1993, Spatial prediction and kriging. In: Cressie, N. (eds.), Statistics for spatial data. Wiley, New York, 105-211.
31 Csontos, L., Nagymarosy, A., Horvath, F. and Kovac, M., 1992, Tertiary evolution of the Intra-Carpathian area:a model. Tectonophysics, 208, 221-241.   DOI
32 Lee, E.Y., Novotny, J. and Wagreich, M., 2016, BasinVis 1.0: A MATLAB(R)-based program for sedimentary basin subsidence analysis and visualization. Computers & Geosciences, 91, 119-127.   DOI
33 Jiricek, R. and Seifert, P., 1990, Paleogeography of the Neogene in the Vienna basin and the adjacent part of the foredeep. In: Minarikova, D. and Lobitzer, H. (eds.), Thirty Years of Geological Cooperation between Austria and Czechoslovakia. Geological Survey, Prague, 89-105.
34 Kovac, M., Barath, I., Harzhauser, M., Hlavaty, I. and Hudackova, N., 2004, Miocene depositional systems and sequence stratigraphy of the Vienna Basin. CFS Courier Forschungsinstitut Senckenberg, 246, 187-212.
35 Lankreijer, A., Kovac, M., Cloetingh, S., Pitoňak, P., Hloska, P. and Biermann, C., 1995, Quantitative subsidence analysis and forward modelling of the Vienna and Danube basins: thin-skinned versus thickskinned extension. Tectonophysics, 252, 433-451.   DOI
36 Lee, E.Y., Novotny, J. and Wagreich, M., 2019, Subsidence analysis and visualization for sedimentary basin analysis and modelling. Springer, Cham, 56 p.
37 Lee, E.Y. and Wagreich, M., 2016, 3D visualization of the sedimentary fill and subsidence evolution in the northern and central Vienna Basin (Miocene). Austrian Journal of Earth Sciences, 109, 241-251.
38 Decker, K. and Peresson, H., 1996, Tertiary kinematics in the Alpine-Carpathian-Pannonian system: links between thrusting, transform faulting und crustal extension. In:Wessely, G. and Liebl, W. (eds.), EAGE Special Publication 5: Oil and Gas in Alpidic Thrustbelts and Basins of Central and Eastern Europe. The Geological Society, London, 69-77.
39 Ratschbacher, L., Frisch, W. and Linzer, H.-G., 1991a, Lateral extrusion in the eastern Alps, part II: structural analysis. Tectonics, 10, 257-271.   DOI
40 Decker, K., 1996, Miocene tectonics at the Alpine-Carpathian junction and the evolution of the Vienna Basin. Mitteilungen der Gesellschaft der Geologie- und Bergbaustudenten, 41, 33-44.
41 Decker, K., Peresson, H. and Hinsch, R., 2005, Active tectonics and Quaternary basin formation along the Vienna Basin Transform fault. Quaternary Science Reviews, 24, 307-322.
42 Royden, L.H., Horvath, F. and Rumpler, J., 1983b, Evolution of the Pannonian Basin System: 1. Tectonics. Tectonics, 2, 63-90.   DOI
43 Lee, E.Y. and Wagreich, M., 2017, Polyphase tectonic subsidence evolution of the Vienna Basin inferred from quantitative subsidence analysis of the northern and central parts. International Journal of Earth Sciences, 106, 687-705.   DOI
44 Ratschbacher, L., Merle, O., Davy, P. and Cobbold, P., 1991b, Lateral extrusion in the eastern Alps, part I:boundary conditions and experiments scaled for gravity. Tectonics, 10, 245-256.   DOI
45 Royden, L.H., 1985, The Vienna Basin: A thin-skinned pull-apart basin. In: Biddle, K.T. and Christie-Blick, N. (eds.), SEPM Special Publication 37: Strike-slip deformation, Basin formation and Sedimentation. SEPM, Tulsa, 319-338.
46 Royden, L.H., 1988, Late Cenozoic tectonics of the Pannonian basin system. In: Royden, L.H. and Horvath, F. (eds.), AAPG Memoir 45: The Pannonian Basin. A study in Basin evolution. AAPG, Tulsa, 27-48.
47 Royden, L.H., Horvath, F., Nagymarosy, A. and Stegena, L., 1983a, Evolution of the Pannonian Basin System:2. Subsidence and thermal history. Tectonics, 2, 91-137.   DOI
48 Salcher, B.C., Meurers, B., Smit, J., Decker, K., Hӧlzel, M. and Wagreich, M., 2012, Strike-slip tectonics and Quaternary basin formation along the Vienna Basin fault system inferred from Bouguer gravity derivatives. Tectonics, 31, TC3004, doi:10.1029/2011TC002979.   DOI
49 Sauer, R., Seifert, P. and Wessely, G., 1992, Part I: Outline of Sedimentation, Tectonic Framework and Hydrocarbon Occurrence in Eastern Lower Austria. Mitteilungen der Osterreichischen Geologischen Gesellschaft, 85, 5-96.
50 Sclater, J.G. and Christie, P.A.F., 1980, Continental stretching: An explanation of the Post-Mid-Cretaceous subsidence of the central North Sea Basin. Journal of Geophysical Research, 85, 3711-3739.   DOI
51 Wagreich, M. and Schmid, H.P., 2002, Backstripping dip-slip fault histories: apparent slip rates for the Miocene of the Vienna Basin. Terra Nova, 14, 163-168.   DOI
52 Steckler, M.S. and Watts, A.B., 1978, Subsidence of the Atlantic-type continental margin off New York. Earth and Planetary Science Letters, 41, 1-13.   DOI
53 Steininger, F.F. and Wessely, G., 1999, From the Tethyan Ocean to the Paratethys Sea: Oligocene to Neogene Stratigraphy, Paleogeography and Palaeobiogeography of the circum-Mediterranean region and the Oligocene to Neogene Basin evolution in Austria. Mitteilungen der Osterreichischen Geologischen Gesellschaft, 92, 95-116.
54 Strauss, P., Harzhauser, M., Hinsch, R. and Wagreich, M., 2006, Sequence stratigraphy in a classic pull-apart basin (Neogene, Vienna Basin) - A 3D seismic based integrated approach. Geologica Carpathica, 57, 185-197.
55 Watts, A.B. and Ryan, W.B.F., 1976, Flexure of the lithosphere and continental margin basins. Tectonophysics, 36, 25-44.   DOI
56 Watts, A.B. and Steckler, M.S., 1979, Subsidence and eustasy at the continental margin of Eastern North America. AGU, Maurice Ewing Symposium Series, 3, 218-234.
57 Wessely, G., Kroll, A., Jiřicek, R. and Nemec, F., 1993, Wiener Becken und angrenzende Gebiete-Geologische Einheiten des praneogenen Beckenuntergrundes. Geologische Themenkarte der Republik Osterreich 1:200.000, Geologische Bundesanstalt, Vienna.
58 Xie, X. and Heller, P.L., 2009, Plate tectonics and basin subsidence history. Geological Society of America Bulletin, 121, 55-64.