• Title/Summary/Keyword: laser-induced thermal imaging

Search Result 12, Processing Time 0.023 seconds

Study of Optimal Conditions Affecting the Photothermal Effect and Fluorescence Characteristics of Indocyanine Green

  • Seo, Sung Hoon;Bae, Min Gyu;Park, Hyeong Ju;Ahn, Jae Sung;Lee, Joong Wook
    • Current Optics and Photonics
    • /
    • v.5 no.5
    • /
    • pp.554-561
    • /
    • 2021
  • Indocyanine green (ICG) is a cyanine dye that has been used in medical diagnostics based on fluorescence imaging, and in medical therapy based on the photothermal effect. It is important to systematically understand the photothermal effect and fluorescence characteristics of ICG simultaneously. By varying a number of conditions such as laser power density, laser irradiation wavelength, concentration of ICG solution, and exposure time of laser irradiation, the intensity properties of fluorescence and the temperature change induced by the photothermal effect are measured simultaneously using a charge-coupled-device camera and a thermal-imaging camera. The optimal conditions for maximizing the photothermal effect are determined, while maintaining a relatively long lifetime and high efficiency of the fluorescence for fluorescence imaging. When the concentration of ICG is approximately 50 ㎍/ml and the laser power density exceeds 1.5 W/cm2, the fluorescence lifetime is the longest and the temperature induced by the photothermal effect rapidly increases, exceeding the critical temperature sufficient to damage human cells and tissues. The findings provide useful insight into the realization of effective photothermal therapy, while also specifying the site to be treated and enabling real-time treatment monitoring.

Laser induced ultrasound generation via reduced graphene oxide coated aluminum transmitter (환원된 산화 그래핀을 이용한 레이저 유도초음파의 64배 압력 상승 및 40dB 세기 상승)

  • Lee, Seok Hwan;Park, Mi-Ae;Yoh, Jai-Ick
    • Laser Solutions
    • /
    • v.15 no.4
    • /
    • pp.1-5
    • /
    • 2012
  • We demonstrate that reduced graphene oxide (rGO) coated thin aluminum film is an effective optoacoustic transmitter for generating high pressure and high frequency ultrasound previously unattainable by other techniques. The rGO layer of different thickness is deposited between a 100 nm-thick aluminum film and a glass substrate. Under a pulsed laser excitation, the transmitter generates enhanced optoacoustic pressure of 64 times the aluminum-alone transmitter. A promising optoacoustic wave generation is possible by optimizing thermoelasticity of metal film and thermal conductivity of rGO in the proposed transmitter for laser-induced ultrasound (LIUS) applications.

  • PDF

VISUALIZATION OF INTERNAL DEFECTS IN PLATE-TYPE NUCLEAR FUEL BY USING NONCONTACT OPTICAL INTERFEROMETRY

  • Park, Seung-Kyu;Park, Nak-Gyu;Baik, Sung-Hoon;Kang, Young-June
    • Nuclear Engineering and Technology
    • /
    • v.45 no.3
    • /
    • pp.361-366
    • /
    • 2013
  • An imaging technique to visualize the internal defects in a plate-type nuclear fuel specimen was developed by using an active optical interferometer for a nondestructive quality inspection. A periodic thermal wave having a sinusoidal intensity pattern induced a periodical strain variation for the specimen. The varying strain image was acquired using an optical laser interferometer. The strain distribution over the internal defects will be distorted in an acquired strain image because a part of the thermal wave will be reflected from these defects during propagation. In this paper, internal defects were efficiently visualized by sequentially accumulating the extracted defect components. The experimental results confirmed that the developed visualization system can be a valuable tool to detect the internal defects in plate-type nuclear fuel.

MAGNETIC RESONANCE IMAGING AND HISTOPATHOLOGIC CORRELATIONS OF FOCAL LESIONS INDUCED BY LASER (레이저 조사후 자기공명영상과 조직학적 소견의 상호일치도)

  • 이정구;정필상;정필섭;조정석;김상준
    • Korean Journal of Bronchoesophagology
    • /
    • v.2 no.2
    • /
    • pp.194-199
    • /
    • 1996
  • Laser therapy is becoming an accepted procedure for tissue coagulation and ablation and is especially useful in treating tumors. The laser energy is applied to the tissue of interest through various delivery systems which are introduced percutaneously, via blood vessels, through body openings, or during surgical exposure of the tissue. One of the major obstacles to effective application of lasers has been the lack of reliable method to determine the extent of tissue involvement in real time. Several methods have been proposed for monitoring the tissue response and controlling the laser in real time during laser therapy. Among them, magnetic resonance imaging(MRI) has been introduced to monitor laser-tissue interactions because laser irradiation induces changes not only in the thermal motions of the hydrogen protons within the tissue but also in the distribution and mobility of water and lipids. The buttocks of New Zealand rabbits were treated by KTP and $CO_2$laser(power : 10 watts, exposure time:10 seconds). m images were taken at immediately after lasering, 1 week later, 2 weeks later, and at the same time, tissues were harvested for histopathologic study. We analyzed MR images and histopathologic findigs of laser-treated tissues. The MR images taken immediately after laser treatment showed 3 layer pattern and which was correlated with histopathologic changes. We suggest MRI may become a useful monitoring tools for laser-tissue interaction.

  • PDF

High Efficiency AMOLED using Hybrid of Small Molecule and Polymer Materials Patterned by Laser Transfer

  • Chin, Byung-Doo;Suh, Min-Chul;Kim, Mu-Hyun;Kang, Tae-Min;Yang, Nam-Choul;Song, Myung-Won;Lee, Seong-Taek;Kwon, Jang-Hyuk;Chung, Ho-Kyoon;Wolk, Martin B.;Bellmann, Erika;Baetzold, John P.
    • Journal of Information Display
    • /
    • v.4 no.3
    • /
    • pp.1-5
    • /
    • 2003
  • Laser-Induced Thermal Imaging (LITI) is a laser addressed patterning process and has unique advantages such as high-resolution patterning with over all position accuracy of the imaged stripes of within 2.5 micrometer and scalability to large-size mother glass. This accuracy is accomplished by real-time error correction and a high-resolution stage control system that includes laser interferometers. Here the new concept of hybrid system that complement the merits of small molecule and polymer to be used as an OLED; our system can realize easy processing of light emitting polymers and high luminance efficiency of small molecules. LITI process enables the stripes to be patlerned with excellent thickness uniformity and multi-stacking of various functional layers without having to use any type of fine metal shadow mask. In this study, we report a full-color hybrid OLED using the multi-layered structure consisting of small molecules and polymers.

Thermoelastic beam in modified couple stress thermoelasticity induced by laser pulse

  • Kumar, Rajneesh;Devi, Shaloo
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.701-710
    • /
    • 2017
  • In this study, the thermoelastic beam in modified couple stress theory due to laser source and heat flux is investigated. The beam are heated by a non-Guassian laser pulse and heat flux. The Euler Bernoulli beam theory and the Laplace transform technique are applied to solve the basic equations for coupled thermoelasticity. The simply-supported and isothermal boundary conditions are assumed for both ends of the beam. A general algorithm of the inverse Laplace transform is developed. The analytical results have been numerically analyzed with the help of MATLAB software. The numerically computed results for lateral deflection, thermal moment and axial stress due to laser source and heat flux have been presented graphically. Some comparisons have been shown in figures to estimate the effects of couple stress on the physical quantities. A particular case of interest is also derived. The study of laser-pulse find many applications in the field of biomedical, imaging processing, material processing and medicine with regard to diagnostics and therapy.

High Efficiency AMOLED Using Hybrid of Small Molecule and Polymer Materials Patterned by Laser Transfer

  • Chin, Byung-Doo;Suh, Min-Chul;Kim, Mu-Hyun;Kang, Tae-Min;Yang, Nam-Choul;Song, Myung-Won;Lee, Seong-Taek;Kwon, Jang-Hyuk;Chung, Ho-Kyoon;Wolk, Martin B.;Bellmann, Erika;Baetzold, John P.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.163-166
    • /
    • 2003
  • Laser-Induced Thermal Imaging (LITI) is a laser addressed patterning process and has unique advantages, such as high-resolution patterning with over-all position accuracy of the imaged stripes within 2.5 micrometer and scalability to large-size mother glass. This accuracy is accomplished using real-time error correction and a high -resolution stage control system that includes laser interferometers. Here the new concept of mixed hybrid system which complement the advantages of small molecular and polymeric materials for use as an OLED; our system can realize the easy processing of polymers and high luminance efficiency of recently developed small molecules. LITI process enables to pattern the stripes with excellent thickness uniformity and multi-stacking of various functional layers without using any type of fine metal shadow mask. In this study, we report a full-color hybrid OLED using the multi-layered structure of small molecular/polymeric species.

  • PDF

Fabrication of highly efficient polymeric phosphorescent light-emitting devices with Laser Induced Thermal Imaging (LITI) technique

  • Kim, Mu-Hyun;Suh, Min-Chul;Lee, Seong-Taek;Kwon, Jang-Hyuk;Chung, Ho-Kyoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.94-97
    • /
    • 2002
  • We report highly efficient phosphorescent-dye-doped polymeric light-emitting devices. The devices consist of a polymeric light-emitting layer comprising the phosphorescent dye, host, and matrix polymers. We patterned the phosphorescent-dye-doped polymeric layer with the LITI technique. The devices showed high efficiencies and good pattern quality to adapt to the development of full-color electroluminescent (EL) devices.

  • PDF

New polymeric host material for efficient organic electro phosphorescent devices

  • Jung, Choong-Hwa;Park, Moo-Jin;Eom, Jae-Hoon;Shim, Hong-Ku;Lee, Seong-Taek;Yang, Nam-Choul;Liand, Duan;Suh, Min-Chul;Chin, Byung-Doo;Hwang, Do-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.843-845
    • /
    • 2009
  • A polymeric host for triplet emitters composed of N-alkylcarbazole and tetramethylbenzene units was successfully synthesized. Efficient energy transfer was observed between this polymeric host and green phosphorescent dyes. The device fabricated using 5 wt% green 1 in the polymeric host as the emitting layer showed the best performance. Thin films of this host-guest system, exhibiting clear stripe patterns could be prepared through the LITI process. The patterned films were then used to fabricate electrophosphorescent devices, which show performance characteristics similar to those of spin-coated devices. The new host material is a good candidate to be used in polymer-based full-color electrophosphorescent light-emitting displays.

  • PDF

The Effectiveness of 448-kHz Capacitive Resistive Monopolar Radiofrequency for Subcutaneous Fat Reduction in a Porcine Model

  • Kwon, Tae-Rin;Lee, Sung-Eun;Kim, Jong Hwan;Jeon, Yong Jae;Jang, You Na;Yoo, Kwang Ho;Kim, Beom Joon
    • Medical Lasers
    • /
    • v.8 no.2
    • /
    • pp.64-73
    • /
    • 2019
  • Background and Objectives The effectiveness of many physiotherapy modalities in reducing subcutaneous fat has been investigated in numerous previous studies. However, to the best of our knowledge, there have been no attempts to determine the effectiveness of physiotherapy modalities in body contouring. The present report determined the effect of 448-kHz capacitive resistive monopolar radiofrequency (CRMRF) in a porcine model. Materials and Methods This study investigated the effect of selective destruction of the subcutaneous fat layer in abdominal fat tissue using CRMRF. The effects of two types of CRMRF (capacitive electric transfer (CET) and resistive electric transfer (RET)) treatment were evaluated using regular digital photography in addition to thermal imaging evaluation, ultrasound measurement, hematological evaluation, and histologic analyses (H&E (hematoxylin and eosin), Oil red O, and immunohistochemistry staining). Results Preclinical evaluation was performed to obtain the data for comparison of the safety and efficacy of the subcutaneous fat reduction after applying CRMRF using CET and RET. After treatment, the thermal transmission was effective, and a 42-47℃ temperature change was observed in the fat layer while an approximately temperature of 42℃ was confirmed on the skin surface. Moreover, after the application of both types of CRMRF treatment, fibrotic septa were observed in the adipose tissue induced by heat at the treatment sites. TUNEL staining was also performed to confirm the process of apoptosis in the adipocytes. Conclusion These results suggest that both CET and RET for CRMRF treatment are safe and effective for subcutaneous fat reduction in a porcine model.