• 제목/요약/키워드: laser-generated ultrasound

검색결과 19건 처리시간 0.076초

Experimental Study for Defects Inspection of CFRP Using Laser-Generated Ultrasound

  • Lee, Joon-Hyun;Park, Won-Su;Byun, Joon-Hyung
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.41-45
    • /
    • 2006
  • The fabrication process of fiber placement system of carbon fiber reinforced plastic (CFRP) requires real time process control and reliable inspection to ensure quality by preventing defects such as delamination and void. Therefore, novel non-contact inspection technique is required during the non-destructive evaluation in a fiber placement system. For the inspection of delamination in CFRP, various methods to receive laser-generated ultrasound were applied by using piezoelectric transducer, air-coupled transducer, wavelet transform and scanning laser ultrasonic technique. Laser-generated ultrasound was received with a conventional piezoelectric sensor in contacting manner. Then signal characteristics due to defects were analyzed to find a factor for detecting defects. Air-coupled transducer was used for reception of laser-generated guided wave using linear slit array in order to generate high frequency guided wave. And line scan technique was used to confirm the capability of on-line application. The high frequency component of laser-generated guided wave received with piezoelectric sensor disappeared after propagating through delamination region. Nevertheless, it was failed to receive high frequency guided wave in using air-coupled transducer. The first peak of the frequency spectrum under 100kHz in the delamination region is higher than in the sound region. By using this feature, the line scanned frequency data were acquired in fully non-contact generation and reception of ultrasound. This method was proved as useful technique for detecting delamination in CFRP.

  • PDF

Finite Element Analysis of Laser-Generated Ultrasound for Characterizing Surface-Breaking Cracks

  • Jeong Hyun Jo
    • Journal of Mechanical Science and Technology
    • /
    • 제19권5호
    • /
    • pp.1116-1122
    • /
    • 2005
  • A finite element method was used to simulate the wave propagation of laser-generated ultrasound and its interaction with surface breaking cracks in an elastic material. Thermoelastic laser line source on the material surface was approximated as a shear dipole and loaded as nodal forces in the plane-strain finite element (FE) model. The shear dipole- FE model was tested for the generation of ultrasound on the surface with no defect. The model was found to generate the Rayleigh surface wave. The model was then extended to examine the interaction of laser generated ultrasound with surface-breaking cracks of various depths. The crack-scattered waves were monitored to size the crack depth. The proposed model clearly reproduced the experimentally observed features that can be used to characterize the presence of surface-breaking cracks.

Fabrication of Microcantilever Ultrasound Sensor and Its Application to the Scanning Laser Source Technique

  • Sohn, Young-Hoon;Krishnaswamy, Sridhar
    • 비파괴검사학회지
    • /
    • 제25권6호
    • /
    • pp.459-466
    • /
    • 2005
  • The scanning laser source (SLS) technique has been proposed recently as an effective way to investigate small surface-breaking defects, By monitoring the amplitude and frequency changes of the ultrasound generated as the SLS scans over a defect, the SLS technique has provided enhanced signal-to-noise performance compared to the traditional pitch-catch or pulse-echo ultrasonic methods, An extension of the SLS approach to map defects in microdevices is proposed by bringing both the generator and the receiver to the near-field scattering region of the defects, To facilitate near-field ultrasound measurement, silicon microcantilever probes are fabricated using microfabrication technique and their acoustical characteristics are investigated, Then, both the laser-generated ultrasonic source and the microcantilever probe are used to monitor near-field scattering by a surface-breaking defect.

Nondestructive Characterization of Materials Using Laser-Generated Ultrasound

  • Park, Sang-Woo;Lee, Joon-Hyun
    • International Journal of Reliability and Applications
    • /
    • 제5권1호
    • /
    • pp.1-13
    • /
    • 2004
  • It is recently well recognized that the technique for the one-sided stress wave velocity measurement in structural materials provides measurement in structural materials provides valuable information on the state of the material such as quality, uniformity, location of cracked or damaged area. This technique is especially effective to measure velocities of longitudinal and Rayleigh waves when access to only one surface of structure is possible. However, one of problems for one-sided stress wave velocity measurement is to get consistent and reliable source for the generation of elastic wave. In this study, the laser based surface elastic wave was used to provide consistent and reliable source for the generation of elastic wave into the materials. The velocities of creeping wave and Rayleigh wave in materials were measured by the one-sided technique using laser based surface elastic wave. These wave velocities were compared with bulk wave velocities such as longitudinal wave and shear wave velocities to certify accuracy of measurement. In addition, the mechanical properties such as poisson's ratio and specific modulus(E/p) were calculated with the velocities of surface elastic waves.

  • PDF

The Scanning Laser Source Technique for Detection of Surface-Breaking and Subsurface Defect

  • Sohn, Young-Hoon;Krishnaswamy, Sridhar
    • 비파괴검사학회지
    • /
    • 제27권3호
    • /
    • pp.246-254
    • /
    • 2007
  • The scanning laser source (SLS) technique is a promising new laser ultrasonic tool for the detection of small surface-breaking defects. The SLS approach is based on monitoring the changes in laser-generated ultrasound as a laser source is scanned over a defect. Changes in amplitude and frequency content are observed for ultrasound generated by the laser over uniform and defective areas. The SLS technique uses a point or a short line-focused high-power laser beam which is swept across the test specimen surface and passes over surface-breaking or subsurface flaws. The ultrasonic signal that arrives at the Rayleigh wave speed is monitored as the SLS is scanned. It is found that the amplitude and frequency of the measured ultrasonic signal have specific variations when the laser source approaches, passes over and moves behind the defect. In this paper, the setup for SLS experiments with full B-scan capability is described and SLS signatures from small surface-breaking and subsurface flaws are discussed using a point or short line focused laser source.

Simulation of Excitation and Propagation of Pico-Second Ultrasound

  • Yang, Seungyong;Kim, Nohyu
    • 비파괴검사학회지
    • /
    • 제34권6호
    • /
    • pp.457-466
    • /
    • 2014
  • This paper presents an analytic and numerical simulation of the generation and propagation of pico-second ultrasound with nano-scale wavelength, enabling the production of bulk waves in thin films. An analytic model of laser-matter interaction and elasto-dynamic wave propagation is introduced to calculate the elastic strain pulse in microstructures. The model includes the laser-pulse absorption on the material surface, heat transfer from a photon to the elastic energy of a phonon, and acoustic wave propagation to formulate the governing equations of ultra-short ultrasound. The excitation and propagation of acoustic pulses produced by ultra-short laser pulses are numerically simulated for an aluminum substrate using the finite-difference method and compared with the analytical solution. Furthermore, Fourier analysis was performed to investigate the frequency spectrum of the simulated elastic wave pulse. It is concluded that a pico-second bulk wave with a very high frequency of up to hundreds of gigahertz is successfully generated in metals using a 100-fs laser pulse and that it can be propagated in the direction of thickness for thickness less than 100 nm.

적응적 에러 보정과 다이나믹 안정기를 이용한 레이저 유도 초음파 검사 시스템 개발 (Development of a Laser-Generated Ultrasonic Inspection System by Using Adaptive Error Correction and Dynamic Stabilizer)

  • 박승규;백성훈;박문철;임창환;나성웅
    • 비파괴검사학회지
    • /
    • 제25권5호
    • /
    • pp.391-399
    • /
    • 2005
  • 레이저 유도 초음파 시스템은 놀은 공간분해능으로 스캐닝 하면서 광대역 범위에서 검사를 할 수 있는 비접촉식 검사 장치이다. 유도되는 초음파 신호의 크기는 펄스레이저의 출력에 의해서도 변화하지만, 연속발진 레이저빔이 위치하는 표면 상태에 따라서도 측정되는 초음파 세기는 크게 변화한다. 본 논문에서는 안정된 레이저 유도 초음파 시스템을 구성하기 위하여 펄스 레이저빔의 출력을 측정하여 초음파 발생 오차를 보정하였으며, 대상체 표면의 상태에 따라 크게 변화하는 측정용 레이저 간섭계의 측정 이득 변화를 매순간 측정하여 측정 오차를 보정하였다. 본 논문에서는 대상체 표면을 스캐닝 할 수 있도록 다이나믹 안정기가 부착된 레이저 유도 초음파 시스템을 개발하였다. 개발한 레이저 초음파 시스템은 스캐닝 과정에서 간섭계의 이득이 최대가 되는 순간을 적응적으로 포착하여 초음파를 발생시키고, 유도된 초음파 신호를 고속으로 샘플링 한 후에 실시간으로 신호처리를 한다. 본 논문에서는 안정적인 레이저 유도 초음파 시스템을 구성하기 위한 전체 시스템의 하드웨어 구성 방법과 제어 알고리듬에 대하여 기술한다. 또한 본 논문에서 제안한 발생오차 보정방법과 측정오차 보정 방법이 시스템의 성능 향상에 유효함을 실험을 통하여 확인하였다.

ASSESSMENT OF WALL-THINNING IN CARBON STEEL PIPE BY USING LASER-GENERATED GUIDED WAVE

  • Kim, Do-Youn;Cho, Youn-Ho;Lee, Joon-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제42권5호
    • /
    • pp.546-551
    • /
    • 2010
  • The objective of this research is to estimate the crack location and size of a carbon steel pipe by using a laser ultrasound guided wave for the wall thinning evaluation of an elbow. The wall thinning of the carbon steel pipe is one of the most serious problems in nuclear power plants, especially the wall thinning of the carbon steel elbow caused by Flow-Accelerated Corrosion (FAC). Therefore, a non-destructive inspection method of elbow is essential for the nuclear power plants to operate safely. The specimens used in this study were carbon steel elbows, which represented the main elements of real nuclear power plants. The shape of the wall thinning was an oval with a width of 120mm, a length of 80mm, and a depth of 5mm. The L(0,1) and L(0,2) modes variation of the ultrasound guided wave signal is obtained from the response of the laser generation/air-coupled detection ultrasonic hybrid system represent the characteristics of the defect. The trends of these characteristics and signal processing were used to estimate the size and location of wall thinning.

Al6061 합금의 소성변형에 따른 음향비선형 특성의 완전 비접촉식 평가 (Fully Non-Contact Assessment of Acoustic Nonlinearity According to Plastic Deformation in Al6061 Alloy)

  • 이현;전청;김정석;장경영
    • 비파괴검사학회지
    • /
    • 제32권4호
    • /
    • pp.388-392
    • /
    • 2012
  • 본 연구에서는 표면파의 음향비선형 특성 측정을 위해 선 배열 레이저 빔을 이용하여 협대역의 표면파를 발생시키고 레이저 TWM(Two-Wave Mixing) 방식으로 수신하는 완전 비접촉 측정 방법이 도입되었다. 이 기술은 알루미늄 합금의 소성변형과 음향비선형 특성과의 상관성을 조사하는데 적용되었다. 그 결과, 재료의 소성변형에 따라 음향 비선형성이 비례적으로 증가하는 것으로 나타났으며, 이는 접촉식 PZT 탐촉자 수신 방법으로 측정한 결과와 동일한 경향이다.

Generation of Thermoelastic Waves by Irradiating a Metal Slab with a Line-Focused Laser Pulse

  • Yoo, Jae-Gwon;Baik, S.H.
    • 비파괴검사학회지
    • /
    • 제26권3호
    • /
    • pp.181-189
    • /
    • 2006
  • A 2D finite-element numerical simulation has been developed to investigate the generation of ultrasonic waves in a homogeneous isotropic elastic slab under a line-focused laser irradiation. Discussing the physical processes involved in the thermoelastic phenomena, we describe a model for the pulsed laser generation of ultrasound in a metal slab. Addressing an analytic method, on the basis of an integral transform technique, for obtaining the solutions of the elastodynamic equation, we outline a finite element method for a numerical simulation of an ultrasonic wave propagation. We present the numerical results for the displacements and the stresses generated by a line-focused laser pulse on the surface of a stainless steel slab.