• Title/Summary/Keyword: laser weld

Search Result 460, Processing Time 0.025 seconds

Welding Quality Evaluation on the LASER Welding Parts of the Zircaloy Spacer Grid Assembly for PWR Fuel Assembly(II) (경수로 원전연료용 질칼로이 지지격자체의 LASER 용접품질 평가(II))

  • Song, Gi-Nam;Yun, Gyeong-Ho;Lee, Gang-Hui;Kim, Su-Seong;Han, Hyeong-Jun
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.70-72
    • /
    • 2005
  • Nuclear fuel assemblies for pressurized water reactors(PWR) are loaded in the reactor core throughout the residence time of three to five years. A spacer grid assembly, which is an interconnected array of slotted grid straps and is welded at the intersections to form an egg crate structure, is one of the main structural components of the nuclear fuel assembly. The spacer grid assembly is structurally required to have enough buckling strength under various kinds of lateral loads acting on the nuclear fuel assembly so as to keep the nuclear fuel assembly straight. To meet this requirement, it is necessary to weld the welding parts carefully and precisely. In this study, laser welding qualities of the Zircaloy spacer grid assembly welded by two welding companies, such as weld strength, weld penetration depth, and weld bead size, are examined and compared.

  • PDF

Weldability of SUS304 and Ti Dissimilar Welds with Various Welding Speed using Single Mode Fiber Laser (싱글모드 파이버 레이저를 이용한 SUS304와 Ti 이종재료의 용접속도에 따른 용접특성)

  • Lee, Su-Jin;Katayama, Seiji;Kim, Jong-Do
    • Journal of Welding and Joining
    • /
    • v.31 no.5
    • /
    • pp.64-70
    • /
    • 2013
  • The joining of Ti and SUS304 dissimilar metals is one of the effective measures to save rare metal. But Ti and SUS304 have differences in materials properties, and Ti and Fe intermetallic compounds such as TiFe and $TiFe_2$ are easily formed in weld fusion zone between Ti and SUS304. Nevertheless, in this study, full penetration lap dissimilar welding of Ti and SUS304 using single-mode fiber laser with ultra-high welding speed was tried, and it was found out that ultra-high welding speed could control the generation of intermetallic compound. To recognize the formation of intermetallic phase in the weld fusion zone and the compound zone of interface weld area were observed and analyzed using energy dispersive X-ray spectroscopy (EDX). And it was confirmed that the ultra-high welding speed could reduce amount of intermetallic compounds, but the intermetallic compounds were existed in the weld fusion zone under the all conditions.

Flow Behavior of Laser Welded Boron Steel Sheet in Uniaxial Tension at Elevated Temperature (레이저 용접된 보론강판의 고온 인장 특성 평가)

  • Kim, D.;Kim, J.H.;Yoo, D.H.;Chung, K.;Kim, Y.;Lee, M.Y.
    • Transactions of Materials Processing
    • /
    • v.20 no.5
    • /
    • pp.362-368
    • /
    • 2011
  • For the purpose of improving crashworthiness qualities and maximizing weight saving efficiency, TWB's(tailor welded blanks) of quench-hardenable boron steel sheet formed by hot stamping processes has been used for automotive BIW (body in white) applications. In this work, the flow behaviors of TWB of quench-hardenable boron steel sheet were investigated in uniaxial tension tests at elevated temperature. TWB's having a uniform thickness of 1.4mm were fabricated by laser welding. Specimens with two weld line directions were used to test the mechanical property and reliability of the weld zone. After heating at $950^{\circ}C$ for 5min, the specimens were subjected to tension test at 650, 700 and $800^{\circ}C$ with a strain rate of 0.01 /s and at $700^{\circ}C$ with strain rates of 0.01, 0.1 and 1/s. The ultimate strength of the weld zones was higher than that of the base materials at 650 and $700^{\circ}C$, but was similar to the base metal at $800^{\circ}C$. Fracture occurred at the base material at 650 and $700^{\circ}C$, but at the weld zone at $800^{\circ}C$.

Evaluation of the Laser Weldability of Inconel 713C alloy (인코넬 713C 합금의 레이저 용접성 평가)

  • Kang, Minjung;Kim, Cheolhee;Kim, Young-Min
    • Journal of Welding and Joining
    • /
    • v.35 no.1
    • /
    • pp.68-73
    • /
    • 2017
  • During welding of Ni based superalloy, hot cracking was usually happen in the fusion zone of a weld. In this study, the laser weldability of Inconel 713C alloy for the turbocharger wastegate valve (WGV) was evaluated with various welding conditions, such as laser power, welding speed, shielding gas. Welding conditions were optimized by bead-on-plate (BOP) and butt joint welding. For the evaluation of laser weldability, bead shapes and weld microstructures were investigated and tensile test was conducted. The fracture surfaces were investigated for the understanding the cause of the fracture.

A study on the microstructure and micro-hardenss distribution in laser welded AZ31 magnesium alloy (AZ31 마그네슘합금 레이저 용접부의 미세조직 및 미소경도의 분포에 관한 연구)

  • Choi, Y.H.;Lee, M.Y.;Choi, S.H.
    • Laser Solutions
    • /
    • v.15 no.3
    • /
    • pp.11-15
    • /
    • 2012
  • The laser weld of AZ31 magnesium alloy was characterized with OM, EBSD and micros vickers hardness tester in experiment. EBSD analysis and micro-hardness measurements were carried out at the three regions (Equiaxed Zone, Columnar Dendrite Zone, Base Metal) of the welded AZ31Mg alloy sheets. The magnesium alloy show the rectangular shape bead in laser weld. EBSD analysis revealed that the three regions show the heterogeneous distribution of grain size and microtexture. Micro-hardness measurement also revealed that the heterogeneous distribution of microstructure contributed to the heterogeneous micro-hardness distribution in the three regions.

  • PDF

A Study on the CO $_2$Laser Beam Welding of Thin Steel Sheets and Tailor Welded Blank (박판 $CO_2$레이져 빔 용접과 소재접합일체성형에 관한 연구)

  • 이희석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.159-164
    • /
    • 1996
  • For the purpose of establishing laser welding condition(laser power, welding speed and beam focus) and of evaluating tailor welded blank for three kinds of thin steel sheets of SPCC, SK5M and SUS304 using in the thin plate structure such as automobile, train and so on. Their $CO_2$ laser weldability were primarily tested under various welding condition. SPCC and SUS304 thin sheets showed good weldability under some welding condition. But, high carbon steel sheet SK5M needs heat treatment after welding to obtain higher tensile strength and ductility of the welded joint. And next, laser welding condition. Butt-welded specimens were not nearly broken at weld bead. However, base material were ruptured in the direction of circumference. The forming depths by tailor weld bead. However, base material were ruptured in the direction of circumference. The forming depths by tailor welded blank were SPCC+SPCC=22~25mm, SUS304+SUS304=25~43mm and SK5M+SK5M=13~17mm.

  • PDF

A study on the influence of process parameters during laser welding of sheet steels (강판의 레이저 용접시 공정변수의 영향에 관한 연구)

  • Park, Young-Soo;Lee, Yoon-Sik;Kim, Hyung-Sik;Kim, Chan
    • Laser Solutions
    • /
    • v.2 no.3
    • /
    • pp.11-18
    • /
    • 1999
  • This paper describes the weldability of carbon steel and stainless steel using 5㎾ $CO_2$ laser system with nearly multi-mode beam and a parabolic focusing mirror. In the laser welding of steels, major welding parameters are focal point, travel speed, beam power, shield gas and gap tolerance, etc.. Two kinds of gases(Ar, He) were used as a assist gas and supplied through the external nozzle. It is very important for optimum condition to remove plasma plume which absorbs laser beam and to obtain deep penetration and sound weld bead. Bead-on-plate welding tests were carried out for the experiments. Penetration data were obtained with various welding parameters and the effects of welding parameters were discussed. Butt welding tests were performed with various conditions. Only the optimum laser parameters assured good weld quality As a result of this study, We achieve the fundamental weldabilities using a high power $CO_2$ laser for carbon steel and stainless steel.

  • PDF

A Study on HAZ Softening Characteristics of Fiber Laser Weldment for High-Strength Steel (고장력강 파이버 레이저 용접부의 HAZ 연화 특성에 관한 연구)

  • Park, Min-Ho;Kim, Ill-Soo;Lee, Jong-Pyo;Jin, Byeong-Ju;Kim, Do-Hyeong;Kim, In-Ju;Kim, Ji-Sun
    • Journal of Welding and Joining
    • /
    • v.33 no.6
    • /
    • pp.27-35
    • /
    • 2015
  • Laser welding sector in the automotive industry has been widely recognized as one of the most important bonding processes, such as parts welding. Efforts to improve productivity and weld quality have been progressing steadily. In addition, laser welding is suitable for welding process that can produce high-quality welds suitable for flexible production and small quantity batch productions. In order to ensure the rigidity of the material, high strength material are applied to more than 1 GPa class body parts and automotive bumper beams. However, not only the situation is that the trend of domestic research, but also development is based on product molding considering freedom of shape where reinforcement is applied to meet the safety regulations and high-speed crash performance, despite the use of high strength materials. The tendency for heat-affected zone (HAZ) softening phenomenon common in areas of laser welded high tensile steel welding confirmed the occurrence of weld softening effect according to the process parameters. Based on this, range of process parameters could be selected for ensuring weld quality.

Characteristics of $CO_2$ or Nd:YAG Laser Welded 600MPa Grade TRIP Steel (600MPa급 TRIP강의 $CO_2$ 및 Nd:YAG 레이저 용접부의 특성)

  • Han, Tae-Kyo;Kim, Seung-Jun;Lee, Bong-Keun;Kim, Dae-Up;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.24 no.1
    • /
    • pp.56-63
    • /
    • 2006
  • The characteristics of $CO_2$ or Nd:YAG laser welded 600MPa ade TRIP steel was investigated. He or Ar gas was used as a shield gas in case of $CO_2$ laser welding, but the shield gas was not used in case of Nd:YAG laser welding. Bead on plate welding was performed with various welding conditions. Defects in the joints of both welding type occurred at 1.8m/min but were not observed over the welding speed of 2.1m/min in case of Nd:YAG laser welding. However, porosity occurred in $CO_2$ laser welding and the tendency of decreasing with the increase of welding speed. The hardness was the highest at heat affected zone near fusion zone as well as at the fusion zone and decreased on approaching the base metal. In a perpendicular tensile test to the weld line, all specimens that have been welded at optimum conditions were fractured at the base metal, and the tensile properties showed the rather higher than those of raw material. In a parallel tensile test, the strength of the joints was higher than that of the base metal. Elongation was found to be lower than that of the raw material. Forming height by Erichsen test and elongation were deeply related with the ratio of base metal/weld metal and the maximum hardness of the weld metal. Also porosity induced to decrease the strength and the elongation. The maximum formability was recorded at approximately 80% as compared with that of the raw material with the optimum condition.