• Title/Summary/Keyword: laser shock wave

Search Result 49, Processing Time 0.021 seconds

Mechanisms of microparticle propulsion by laser ablation

  • Gojani, A.B.;Menezes, V.;Yoh, J.J.;Takayama, K.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.837-841
    • /
    • 2008
  • Propulsion of gene coated micro-particles is desired for non-intrusive drug delivery inside biological tissue. This has been achieved by the development of a device that uses high power laser pulses. The present paper looks at the mechanisms of micro-particle acceleration. Initially, a high power laser pulse is focused onto the front side of a thin aluminium foil leading to its ablation. The ablation front drives a compression wave inside the foil, thus leading to the formation of a shock wave, which will later reflect from the rear side of the foil, due to acoustic impedance mismatch. The reflected wave will induce an opposite motion of the foil, characterized by a very high speed, of the order of several millimeters per microsecond. Micro-particles, which are deposited on the rear side of the foil, thus get accelerated and ejected as micro-projectiles and are able to penetrate several hundreds of micrometers inside tissue-like material. These processes have been observed experimentally by using high-speed shadowgraphy and considered analytically.

  • PDF

Removal of small particles from silicon wafers using laser-induced shock waves (레이저 유기 충격파를 이용한 웨이퍼 표면 미소입자 제거)

  • 이종명;조성호
    • Laser Solutions
    • /
    • v.5 no.2
    • /
    • pp.9-15
    • /
    • 2002
  • Basic principles and unique characteristics of laser-induced shock cleaning have been described compared to a conventional laser cleaning method and the removal of small tungsten particles from silicon wafer surfaces was attempted using both methods. It was found that the conventional laser cleaning was not feasible to remove the tungsten particles whereas a successful removal of the particles was carried out by the laser-induced shock waves. From the quantitative analysis using a surface scanner, the average removal efficiency of the particles was more than 98% where smaller particles were slightly more difficult to remove probably due to the increased adhesion force with a decrease of the particle size. It was also seen that the gap distance between the laser focus and the wafer surface is an important processing parameter since the removal efficiency is strongly dependent on the gap distance.

  • PDF

Preliminary Experiments of Laser Induced Shock Phenomena (광열고압 충격현상에 대한 예비 실험)

  • Kim, Sun-Cheol;Choi, Yoon-Soo;Han, Chung-Kyu;Cho, Kyung-Ho;Kim, Hyoung-Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1171-1177
    • /
    • 2011
  • A high power laser beam focused on a small area accelerates a thin material that flies and hits other target material in which a shock wave may be induced. This laser induced shock experimental method is more repeatable and cheaper but worse than other experimental method using gas gun or other apparatus. An optical system including a phase zone plate reduces the interference and also makes the focused-beam-intensity distribution uniform. We wrote a computer code that calculates light ray traces. Using the code we designed and fabricated an optical system including a phase zone plate and improved the laser-beam uniformity. We introduce preliminary experimental results of laser induced shock of the samples such as aluminum and other materials.

Modeling of a Confinement Effect in Laser Shock Peening on Titanium Alloy (티타늄 합금에 대한 레이저 쇼크 피닝에서 컨파인먼트에 따른 피닝 효과 모델링)

  • Lee, Wooram;Kim, Joohan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.680-685
    • /
    • 2013
  • In this study, the effect of laser shock peening on a titanium alloy was modeled using different confinements. Both liquid and solid confinement could be applied to laser shock peening, and solid confinement provided a dry laser shock peening process, which has the advantage of a corrosion-free effect. When a different confinement was applied to laser shock peening, a different peening effect would be expected. In our study, the peening effect was numerically modeled and simulated. The main effect of different confinements was a change in the impedances required to confine a shock wave from a plasma. The impedances were assumed with respect to different materials. Johnson-Cook's plastic deformation modeling was applied to the simulation. The strains and residual stresses were calculated to evaluate the confinement effects. When solid confinement was used, the residual stress increased by 60-85%, compared to the case of liquid confinement. However, the depth of the residual stress was slightly deeper. The simulated results could be applied to estimate the peening effect when a different confinement was used in the laser shock peening process.

Particle Acceleration via Laser Ablation

  • Choi, Ji-Hee;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.566-569
    • /
    • 2008
  • Recently, the biolistic process is emerging as an effective needle-free drug delivery technique to transfer adequate concentrations of pharmacologic agents to soft living tissues with minimum side effects. We have started developing an effective method for delivering drug coated particles using laser ablation. A thin metal foil with deposited micro-particles on one side is irradiated with laser beam on the opposite side so that a shock wave is generated. This shock wave travels through the foil and is reflected, which causes and instantaneous deformation of the foil. Due to such a sudden deformation, the micro-particles are ejected at a very high speed. Here we present the experimental results of direct and confined laser ablation, which correspond to the initial stage of the whole experiment.

  • PDF

Spray Characterization and Flow Visualization of the Supersonic Liquid Jet by a Projectile Impingement (발사체 충돌에 의한 초음속 액체 제트의 분사 특성 및 유동 가시화)

  • Shin, Jeung-Hwan;Lee, In-Chul;Koo, Ja-Ye;Kim, Heuy-Dong
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.2
    • /
    • pp.27-33
    • /
    • 2011
  • Supersonic liquid jet discharged from a nozzle has been investigated by using a ballistic range which is composed of high-pressure tube, pump tube, launch tube and liquid storage nozzle. High-speed Schlieren optical method was used to visualize the supersonic liquid jet flow field containing shock wave system, and spray droplet diameter was measured by the laser diffraction method. Experiment was performed with various types of nozzle to investigate the major characteristics of the supersonic liquid jet operating at the range of total pressure of 0.8 from 2.14 GPa. The results obtained shows that shock wave considerably affects the detailed atomization process of the liquid jet and as the nozzle diameter decreases, the shock wave angle and the averaged SMD of spray droplet tends to decrease.

Investigation on the Flow Field Characteristics of a Highly Underexpanded Pulsed Plasma Jet

  • Kim, Jong-Uk;Kim, Youn J.
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1691-1698
    • /
    • 2001
  • In recent years, significant progress has been made in modeling turbulence behavior in plasma and its effect on transport. It has also been made in diagnostics for turbulence measurement; however, there is still a large gap between theoretical model and experimental measurements. Visualization of turbulence can improve the connection to theory and validation of the theoretical model. One method to visualize the flow structures in plasma is a laser Schlieren imaging technique. We have recently applied this technique and investigated the characteristics of a highly underexpanded pulsed plasma jet originating from an electrothermal capillary source. Measurements include temporally resolved laser Schlieren imaging of a precursor blast wave. Analysis on the trajectory of the precursor blast wave shows that it does not follow the scaling expected for a strong shock resulting from the instantaneous deposition of energy at a point. However, the shock velocity does scale as the square root of the deposited energy, in accordance with the point deposition approximation.

  • PDF