• 제목/요약/키워드: laser metrology

검색결과 89건 처리시간 0.028초

스페클 간섭계의 응용 (Applications of Speckle Interferometer)

  • 백성훈;박승규;김철중
    • 한국정밀공학회지
    • /
    • 제21권5호
    • /
    • pp.14-18
    • /
    • 2004
  • 스페클 간섭계는 빛을 이용하는 측정 방법이므로 비접촉/원격 측정 방법이며, 빛의 파장의 수십-수백 분의 1 정도의 정밀도로 측정이 가능하고, 레이저가 조사되는 영역 전체의 동시 측정이 가능하다는 장점을 가지고 있다 특히 최근에는 전자, 영상, 컴퓨터 기술의 발달에 힘입어 ESPI(Electronic Speckle Pattern interferometer; 전자 스페클 상관 간섭계) 장치가 많은 발전을 이루었고, 이에 따라 산업 현장에서의 활용도 계속 늘고 있다. (중략)

Absolute Distance Measurements Using the Optical Comb of a Femtosecond Pulse Laser

  • Jin, Jong-Han;Kim, Young-Jin;Kim, Yun-Seok;Kim, Seung-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권4호
    • /
    • pp.22-26
    • /
    • 2007
  • We describe a new way of implementing absolute displacement measurements by exploiting the optical comb of a femtosecond pulse laser as a wavelength ruler, The optical comb is stabilized by locking both the repetition rate and the carrier offset frequency to an Rb clock of frequency standard. Multiwavelength interferometry is then performed using the quasi-monochromatic beams of well-defined generated wavelengths by tuning an external cavity laser diode consecutively to preselected light modes of the optical comb. This scheme of wavelength synthesizing allows the measurement of absolute distances with a high precision that is traceable to the definition of time. The achievable wavelength uncertainty is $1.9{\times}10^{-10}$, which allows the absolute heights of gauge blocks to be determined with an overall calibration uncertainty of 15 nm (k = 1). These results demonstrate a successful industrial application of an optical frequency synthesis employing a femtosecond laser, a technique that offers many possibilities for performing precision length metrology that is traceable to the well-defined international definition of time.

속도군 선택 광펌핑 분광학 (Velocity selective optical pumping spectroscopy)

  • 박성종;조혁;이호성
    • 한국광학회지
    • /
    • 제8권5호
    • /
    • pp.366-371
    • /
    • 1997
  • 기체상태의 루비듐 원자가 실온에서 Maxwell 속도 분포를 이루고 있을 때 광펌핑 현상과 특정 속도 원자의 선택에 의해 도플러 효과를 제거시키는 속도군 선택 광펌핑(VSOP) 분광학을 실시하였다. 본 실험에서는 주파수가 고정된 locked laser와 주파수 튜닝이 가능한 sweep laser를 동시에 사용하되, 두 빔을 같은 방향으로 진행시키고, 시료 속에서 서로 겹치게 함으로써 주공진 신호만을 발생시킬 수 있었다. 이 방법으로 지금까지 알려진 VSOP 분광학보다 원자들의 속도 선택 범위가 더 넓어졌다.

  • PDF

A study on the Correlation of Peak counts between the Mechanical and the Optical Measurements in Surface Metrology

  • Nahm, Kie B.;Tiziani, Hans J.
    • 한국광학회지
    • /
    • 제2권2호
    • /
    • pp.96-102
    • /
    • 1991
  • Monitoring the surface profile real time on the manufacturing line of planar products has been accomplished by employing the scattering of a laser light. The laser beam was focused onto the surface and the direction of the reflected beam was utilized to obtain the slope of the surface facet. By taking data fast enough, it was possible to obtain the microscopic surface structure. The mean roughness thus obtained agreed well with the ones found with the mechanical stylus instrument. There was discrepancy between the two results as to the number of peaks per com. A simple model based on the deconvolution of the raw data was found adequate to improve the agreement to an acceptable level.

  • PDF

펨토초 레이저를 이용한 비동일 광경로 저결맞음 간섭계 (Unequal-path Low-coherence Interferometry Using Femtosecond Pulse Lasers)

  • 오정석;김승우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.204-207
    • /
    • 2005
  • We discuss two possibilities of using femtosecond pulse lasers as a new interferometric light source fer enhanced precision surface profile metrology. First, a train of ultra-fast laser pulses yields repeated low temporal coherence, which allows performing unequal-path scanning interferometry that is not feasible with white light. Second, high spatial coherence of femtosecond pulse lasers enables to test large size optics in non-symmetric configurations with relatively small size reference surfaces. These two advantages are verified experimentally using Fizeau and Twyman-Green type scanning interferometers.

  • PDF

A Fiber Spool's Vibration Sensitivity Optimization Based on Orthogonal Experimental Design

  • Jing Gao;Linbo Zhang;Dongdong Jiao;Guanjun Xu;Xue Deng;Qi Zang;Honglei Yang;Ruifang Dong;Tao Liu;Shougang Zhang
    • Current Optics and Photonics
    • /
    • 제8권1호
    • /
    • pp.45-55
    • /
    • 2024
  • A fiber spool with ultra-low vibration sensitivity has been demonstrated for the ultra-narrow-linewidth fiber-stabilized laser by the multi-object orthogonal experimental design method, which can achieve the optimization object and analysis of influence levels without extensive computation. According to a test of 4 levels and 4 factors, an L16 (44) orthogonal table is established to design orthogonal experiments. The vibration sensitivities along the axial and radial directions and the normalized sums of the vibration sensitivities are determined as single objects and comprehensive objects, respectively. We adopt the range analysis of object values to obtain the influence levels of the four design parameters on the single objects and the comprehensive object. The optimal parameter combinations are determined by both methods of comprehensive balance and evaluation. Based on the corresponding fractional frequency stability of ultra-narrow-linewidth fiber-stabilized lasers, we obtain the final optimal parameter combination A3B1C2D1, which can achieve the fiber spool with vibration sensitivities of 10-12/g magnitude. This work is the first time to use an orthogonal experimental design method to optimize the vibration sensitivities of fiber spools, providing an approach to design the fiber spool with ultra-low vibration sensitivity.

RDS(Robotic Drilling System)용 TCP 정밀계측을 위한 iGPS 3D Probe 개발에 관한 연구 (A Study on the Development of iGPS 3D Probe for RDS for the Precision Measurement of TCP)

  • 김태화;문성호;강성호;권순재
    • 한국기계가공학회지
    • /
    • 제11권6호
    • /
    • pp.130-138
    • /
    • 2012
  • There are increasing demands from the industry for intelligent robot-calibration solutions, which can be tightly integrated to the manufacturing process. A proposed solution can simplify conventional robot-calibration and teaching methods without tedious procedures and lengthy training time. iGPS(Indoor GPS) system is a laser based real-time dynamic tracking/measurement system. The key element is acquiring and reporting three-dimensional(3D) information, which can be accomplished as an integrated system or as manual contact based measurements by a user. A 3D probe is introduced as the user holds the probe in his hand and moves the probe tip over the object. The X, Y, and Z coordinates of the probe tip are measured in real-time with high accuracy. In this paper, a new approach of robot-calibration and teaching system is introduced by implementing a 3D measurement system for measuring and tracking an object with motions in up to six degrees of freedom. The general concept and kinematics of the metrology system as well as the derivations of an error budget for the general device are described. Several experimental results of geometry and its related error identification for an easy compensation / teaching method on an industrial robot will also be included.

펨토초 레이저의 주파수 모드를 이용한 정밀 길이 측정 (Precision Length Metrology using the Optical Comb of Femtosecond Pulse Lasers)

  • 진종한;김영진;김승우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.216-219
    • /
    • 2005
  • In precision length measurements using optical interferometry based on homodyne or heterodyne principles, it is crucial to have frequency-stabilized monochromatic light sources. To the end, we investigate the possibility of utilizing the optical comb constituted by ultrashort femtosecond pulse lasers generated from a gain medium of titanium-doped aluminium oxide $(Ti:Al_2O_3)$. The optical comb is stabilized by locking to the caesium atomic clock, which allows all the modes of the comb to maintain an extremely high level of frequency stabilization to precision of one part in $10^{16}$. Then, high precision length measurements are realized by extracting a single or group of particularly wanted optical frequency components or by adopting a third-party light source locked to the comb. Required measurement system setup will be presented in detail along with experimental results.

  • PDF

삼면반사체를 이용한 6자유도 미소 변위 측정 (Measurement of Fine 6-DOF Displacement using a 3-facet Mirror)

  • 박원식;조형석;변용규;박노열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.50-50
    • /
    • 2000
  • In this paper, a new measuring system is :proposed which can measure the fine 6-DOF displacement of rigid bodies. Its measurement principle is based on detection of laser beam reflected from a specially fabricated mirror that looks like a triangular pyramid having an equilateral cross-sectional shape. The mirror has three lateral reflective surfaces inclined 45$^{\circ}$ to its bottom surface. We call this mirror 3-facet mirror. The 3-facet mirror is mounted on the object whose 6-DOF displacement is to be measured. The measurement is operated by a laser-based optical system composed of a 3-facet mirror, a laser source, three position-sensitive detectors(PSD). In the sensor system, three PSDs are located at three corner points of a triangular formation, which is an equilateral triangular formation tying parallel to the reference plane. The sensitive areas of three PSDs are oriented toward the center point of the triangular formation. The object whose 6-DOF displacement is to be measured is situated at the center with the 3-facet mirror on its top surface. A laser beam is emitted from the laser source located at the upright position and vertically incident on the top of the 3-fatcet mirror. Since each reflective facet faces toward each PSD, the laser beam is reflected at the 3-facet mirror and splits into three sub-beams, each of which is reflected from the three facets and finally arrives at three PSDs, respectively. Since each PSD is a 2-dimensional sensor, we can acquire the information on the 6-DOF displacement of the 3-facet mirror. From this principle, we can get 6-DOF displacement of any object simply by mounting the 3-facet mirror on the object. In this paper, we model the relationship between the 6-DOF displacement of the object and the outputs of three PSDs. And, a series of simulations are performed to demonstrate the effectiveness of the proposed method. The simulation results show that the proposed sensing system can be an effective means of obtaining 3-dimensional position and orientation of arbitrary objects.

  • PDF

중적외선 광 파라메트릭 발진기를 이용한 중적외선 분광기 성능 평가 (Performance Evaluation of Mid-IR Spectrometers by Using a Mid-IR Tunable Optical Parametric Oscillator)

  • 남희진;김승관;배인호;최영준;고재현
    • 한국광학회지
    • /
    • 제30권4호
    • /
    • pp.154-158
    • /
    • 2019
  • 기존에 개발되었던 광 파라메트릭 발진기를 이용해 중적외선 분광기의 성능 평가 장치를 구축하였다. 사용된 중적외선 광 파라메트릭 발진기는 파장 1064 nm의 연속파 레이저로 펌핑되는 fan-out형 MgO-doped periodically poled lithium niobate (MgO:PPLN) 비선형 결정을 사용하여 파장가변 영역이$ 2.5{\sim}3.6{\mu}m$인 공중심 공진기 구조를 가지고 있다. 이 광 파라메트릭 발진기에 중적외선용 적분구 및 푸리에 변환 적외선 광 스펙트럼 분석기를 결합하여 중적외선 분광기 성능평가 장치를 구축하였다. 구축된 평가장치를 국내에서 개발한 중적외선용 분광기에 적용, 성능 평가를 진행함으로써 본 평가 장치를 분광기의 파장 분해능, 신호대잡음비, 분광 떠돌이광 등의 성능을 평가하는데 활용할 수 있음을 보였다.