• Title/Summary/Keyword: laser measurement

Search Result 2,033, Processing Time 0.026 seconds

A Distance Measurement System Using a Laser Pointer and a Monocular Vision Sensor (레이저포인터와 단일카메라를 이용한 거리측정 시스템)

  • Jeon, Yeongsan;Park, Jungkeun;Kang, Taesam;Lee, Jeong-Oog
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.5
    • /
    • pp.422-428
    • /
    • 2013
  • Recently, many unmanned aerial vehicle (UAV) studies have focused on small UAVs, because they are cost effective and suitable in dangerous indoor environments where human entry is limited. Map building through distance measurement is a key technology for the autonomous flight of small UAVs. In many researches for unmanned systems, distance could be measured by using laser range finders or stereo vision sensors. Even though a laser range finder provides accurate distance measurements, it has a disadvantage of high cost. Calculating the distance using a stereo vision sensor is straightforward. However, the sensor is large and heavy, which is not suitable for small UAVs with limited payload. This paper suggests a low-cost distance measurement system using a laser pointer and a monocular vision sensor. A method to measure distance using the suggested system is explained and some experiments on map building are conducted with these distance measurements. The experimental results are compared to the actual data and the reliability of the suggested system is verified.

Monitoring of waterjet cutting free surface using laser sensor (레이저 센서를 이용한 워터젯 절삭 자유면 모니터링)

  • Oh, Tae-Min;Hong, Chang-Ho;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.5
    • /
    • pp.469-481
    • /
    • 2013
  • The monitoring of a free surface generated by waterjet cutting technology is very important for an efficient construction process. In this study, experiments using a laser sensor were performed to provide a data processing method and to determine optimized parameters. The experimental parameters here are the angular resolution, measurement distance, and free surface cutting shape. The results show that the monitoring resolution increases with a decrease in the angular resolution and the horizontal measurement distance and with an increase in the cutting (free surface) width. This laser monitoring method can be applied during the measurement of free surface shapes and depths in situ.

Combustion Diagnostics Method Using Diode Laser Absorption Spectroscopy (다이오드 레이저를 이용한 연소진단기법)

  • Cha, Hak-Joo;Kim, Min-Soo;Shin, Myung-Chul;Kim, Se-Won;Kim, Hyuck-Joo;Han, Jae-Won
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.75-83
    • /
    • 2003
  • Diode laser absorption system is advantageous of their non-invasive nature, fast response time, high sensitivity and real-time measurement capability. Furthermore, recent advances in room-temperature, near-IR and visible diode laser sources for telecommunication, optical data storage applications are enabling combustion diagnostics system based on diode laser absorption spectroscopy. So, combined with fiber-optics and high sensitive detection strategies, compact and portable sensor system are now appearing for a variety of applications. The objective of this research is to take advantage of distributed feed-back diode laser and develope new gas sensing system. It experimentally found out that the wavelength, power characteristics as a function of injection current and temperature. In addition to direct absorption and wavelength modulation spectroscopy have been demonstrated in these experiments and have a bright prospect to this diode laser system.

  • PDF

Development of Measurement mechanism of Laser Beam Spot size for Industrial SFF system (산업용 SFF 시스템에서 Laser Beam Spot size 측정 메커니즘 개발)

  • Bae, Sung-Woo;Kim, Dong-Soo;Choi, Kyung-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1383-1388
    • /
    • 2007
  • Accuracy and processing time are very important factors when the desired shape is fabricated with Selective Laser Sintering (SLS), one of Solid Freeform Fabrication (SFF) systems. In a conventional SLS process, laser spot size is fixed during laser exposing on the sliced figure. Therefore, it is difficult to accurately and rapidly fabricate the desired shape. In this paper, to deal with those problems an SFF system having ability of changing spot size is developed. The system provides high accuracy and optimal processing time. Specifically, a variable beam expander is employed to adjust spot size for different figures on a sliced shape. Finally, Design and performance estimation of the SFF system employing a variable beam expander are achieved and the mechanism will be addressed to measure the real spot size generated from the variable beam expander.

  • PDF

Estimation of Hardened Depth in Laser Surface Hardening Processes Using Neural Networks (레이저 표면경화공정에서 신경회로망을 이용한 경화층깊이 추정)

  • 박영준;조형석;한유희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1907-1914
    • /
    • 1995
  • An on-line measurement of the workpiece hardened depth in laser surface hardening processes is very much difficult to achieve, since the hardening process occurs in depth wise direction. In this paper, the hardened depth is estimated using a multilayered neural network. Input data of the neural network are the surface temperatures at arbitrary chosen five surface points, laser power and traveling speed of laser beam torch. To simulate the actual hardening process, a finite difference method(FDM) is used to model the process. Since this model yields the calculation results of the temperature distribution around the workpiece volume in the vicinity of the laser torch, this model is used to obtain the network's training data and laser to evaluate the performance of the neural network estimator. The simulation results show that the proposed scheme can be used to estimate the hardened depth with reasonable accuracy.

Measurement of excited species in discharges using Laser Absorption spectroscopy

  • Sakai, Yosuke
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.5-8
    • /
    • 2000
  • The population density of excited species in dc, rf and laser ablation plume plasmas has been measured using laser absorption spectroscopy. It was shown that, when the plasma was modulated by on and off with, the sensitivity and signal to noise (S/N) ratio became high. For example, the atomic O(3$^{5}$ S$^{o}$ $_2$) Population density, No* in $O_2$/He mixtures was obtained by the highest S/N ratio at a frequency of 2.7kHz. In a 20Torr room air, the lowest No* level to be detectable was shown to be an order of 10$^{7}$ cm$^{-3}$ . The population densities of resonance Ar(1S$_2$) and Xe(1S$_4$) levels were also measured in barrier discharges and laser ablation plasmas.

  • PDF

The ablation of ITO thin films by KrF Eximer laser and its characteristics (KrF 엑시머 레이저에 의한 ITO 박막의 어블레이션과 표면특성관찰)

  • Lee, Kyoung-Cheol;Lee, Cheon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.511-514
    • /
    • 2000
  • This work aimed to develop ITO (Indium Tin Oxide) thin films ablation with a KrF Eximer laser required for the application in flat panel display, especially patterning into small geometry on a large substrate area. The threshold fluence for ablating ITO on glass substrate is about 0.1 J/cm$^2$. And its value is much smaller than using third harmonic Nd:YAG laser. Through the optical microscope measurement the surface color of the damaged ITO is changed into dark brown and irradiated spot is completely isolated form the undamaged surroundings by laser light. The XPS analysis showed that the relative surface concentration of Sn and In were essentially unchanged (In :Sn=5:1) after irradiating Eximer laser. Using aluminium mask made by second harmonic Nd:YAG laser the ITO patterning is carried out.

  • PDF

Comparison of 2 root surface area measurement methods: 3-dimensional laser scanning and cone-beam computed tomography

  • Tasanapanont, Jintana;Apisariyakul, Janya;Wattanachai, Tanapan;Sriwilas, Patiyut;Midtbo, Marit;Jotikasthira, Dhirawat
    • Imaging Science in Dentistry
    • /
    • v.47 no.2
    • /
    • pp.117-122
    • /
    • 2017
  • Purpose: The aim of this study was to compare the use of 3-dimensional (3D) laser scanning and cone-beam computed tomography (CBCT) as methods of root surface measurement. Materials and Methods: Thirty teeth (15 maxillary first premolars and 15 mandibular first premolars) from 8 patients who required extractions for orthodontic treatment were selected. Before extraction, pre-treatment CBCT images of all the patients were recorded. First, a CBCT image was imported into simulation software (Mimics version 15.01; Materialise, Leuven, Belgium) and the root surface area of each tooth was calculated using 3-Matic (version 7.01, Materialise, Leuven, Belgium). After extraction, all the teeth were scanned and the root surface area of each extracted tooth was calculated. The root surface areas calculated using these 2 measurement methods were analyzed using the paired t-test (P<.05). Correlations between the 2 methods were determined by calculating the Pearson correlation coefficient. The intraclass correlation coefficient(ICC) was used to assess intraobserver reliability. Results: The root surface area measurements ($230.11{\pm}41.97mm^2$) obtained using CBCT were slightly greater than those ($229.31{\pm}42.46mm^2$) obtained using 3D laser scanning, but not significantly (P=.425). A high Pearson correlation coefficient was found between the CBCT and the 3D laser scanner measurements. The intraobserver ICC was 1.000 for 3D laser scanning and 0.990 for CBCT. Conclusion: This study presents a novel CBCT approach for measuring the root surface area; this technique can be used for estimating the root surface area of non-extracted teeth.

The Real-Time Temporal and Spatial Diagnostics of Ultrashort High-Power Laser Pulses using an All-Reflective Single-Shot Autocorrelator

  • Kim, Ha-Na;Park, Seong Hee;Kim, Kyung Nam;Han, Byungheon;Shin, Jae Sung;Lee, Kitae;Cha, Yong-Ho;Jang, Kyu-Ha;Jeon, Min Yong;Miginsky, Sergei V.;Jeong, Young Uk;Vinokurov, Nikolay A.
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.382-387
    • /
    • 2014
  • An all-reflective, simple noncollinear second harmonic (SH) autocorrelator is described for monitoring the shot-to-shot behavior of ultrashort high-power laser pulses. Two mirrors are used for the dispersion-free splitting of a pulse into two halves. One of the mirrors is able to adjust the delay time and angle between two halves of the laser pulse in a nonlinear crystal. We present the possibility of real-time measurement of the pulse duration, peak intensity (or energy), and the pointing jitters of a laser pulse, by analyzing the spatial profile of the SH autocorrelation signal measured by a CCD camera. The measurement of the shot-to-shot variation of those parameters will be important for the detailed characterization of laser accelerated electrons or protons.

A Study on Adaptable Non-contact Shape Inspection System (적응형 비접촉 형상 검사에 관한 연구)

  • Kang, Young-June;Park, Nak-Gyu;Lee, Dong-Hwan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.2
    • /
    • pp.74-80
    • /
    • 2005
  • A new dimension measuring method for the measurement of diameter of an object has been developed using laser triangulation. The 3D data of an object was calculated from the 2 dimensional image information obtained by the laser stripe using the laser triangulation. The system that use existing theory can measure the diameter of hole not only in a normal plane but also ill an incline plane. However, in the existing theory, since the lens with fixed feral length was used, the area of measurement was fixed. The simplest way to solve this problem is to change distance between a CCD camera and object. Other way is to use a zoom lens having variable focal length. In this paper, the zoom lens with variable focal length was used. Therefore, we ran experiment with magnification that is optimized according to size of object using zoom lens with variable focal length.