• Title/Summary/Keyword: laser measurement

Search Result 2,031, Processing Time 0.042 seconds

Measurement of Vibration of Rotating Disk Cam Using He-Ne Laser and Photodiode (광소자와 헬륨-네온 레이저를 이용한 디스크 캠의 진동 측정)

  • Yoo, W.J.;Lee, G.S.;Kim, J.D.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.10
    • /
    • pp.69-77
    • /
    • 1995
  • This laser measurement system has been developed using He-Ne laser and photodiode. The laser beam intensity transmitted on a photodiode was disturbed by eccentrically rotating disk cam with various speeds. The photodiode and an amplifier were used to change the detected beam intensity into voltage. The digitized data through the developed system were recorded on a micro-computer by using a signal analysis program. Its reliability was ascertained by using FFT analyzer. The vibration of rotating disk cam can be analyzed by measureing the intensity change of laser beam which the results by FFT analyzer were similar to. The amplifier was devised to be able to modulate the fluctuations of laser beam. The voltage could be linearly recorded with the change of the laser beam intensity.

  • PDF

Development of an Internal Measurement System for the Footwear using Laser Sensor (레이저 센서를 이용한 신발 내측 측정장치 개발)

  • 이지용;김민주;이승수;박재덕;전언찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.281-284
    • /
    • 2004
  • This paper presents studies on the development of an internal measurement system for the footwear using laser sensor. The measurement system gains to the height of the profile at internal footwear. It accomplishes the 3-axises control which uses ball screws, L-M guides and stepping motors. It is used a laser sensor at the measurement of the distance, and Labview is used for the control and the measurement. We can get the profile through reverse engineering for the LAST. The data of profile is fixed a heigh of the LAST. Then, we try to verify as compare the profile with one which is collected by Internal measurement system..

  • PDF

A Study on Curvature Radius Measurement Using Laser Interferometer (레이저 간섭계를 이용한 곡률반경 측정에 관한 연구)

  • Lee Ji Yong;Kim Min Ju;Lee Seung Soo;Jeon Eon Chan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.6
    • /
    • pp.34-40
    • /
    • 2004
  • This paper presents studies on curvature radius measurement using the laser interferometer. It is a general practice to measure to $10^{-10}$m in length with the recent improvement and innovations in measurement technology and the processor used. The measurement methods can generally be categorized as these two: the contactual method and non-contactual method; and in this study, we will find ways to lower the cost for a CMM, or a coordinate measurement machine, and try to find an alternative. Furthermore, we will discuss some of the ways to improve the non-contactual measurement methods-optical interferometer method and the optical triangulation method. We will measure an object using a laser distance measuring device and Set the Point-contact result with the ball-bearing type and line-contact result with the bearing type, to decide on which probe type will be used.

Vibration Measurements of Large-Scale Structure Using Laser and High-Speed CCD Camera (레이저와 고속 CCD 카메라를 이용한 대형구조물의 진동계측)

  • 이창복;안세호;양성훈;염정원;강동욱;김기두
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8C
    • /
    • pp.1104-1112
    • /
    • 2004
  • In this paper, we establish measurement methods of vibration frequency for three-dimensional behavior measurement of large-scale structure using laser and high-speed CCD camera. We project the diode laser having a smaller fluctuation on the object plane attached to the structure and measure the displacement of the structure using a precise relative measurement algorithm. When we use high-speed(120 frames/sec) CCD camera, we can measure the vibration frequency having the uncertainty within 0.5% by taking FFT on the displacement, from 0Hz to 40Hz. And we also confirm the reliability and economical string of the suggested measurement method of vibration frequency of the structure by showing the accuracy of displacement measurement using laser is comparable to that of relative positioning methods using GPS.

Development of a 3D Roughness Measurement System of Rock Joint Using Laser Type Displacement Meter (레이저 변위계를 이용한 암석 절리면의 3차원 거칠기 측정기 개발)

  • 배기윤;이정인
    • Tunnel and Underground Space
    • /
    • v.12 no.4
    • /
    • pp.268-276
    • /
    • 2002
  • In this study, a 3D coordinate measurement system equipped with a laser displacement meter for digitizing rock joint surface was established and the digitized data were used to calculate several roughness parameters. The parameters used in this study were micro avenge inclination $angle(i_{ave})$, average slope of joint $asperity(SL_{ ave})$, root mean square of $i-angle(i_{rms})$, standard deviation of height(SDH), standard deviation of $i-angle(SD_i)$, roughness profile $index(R_P)$, and fractal dimension(D). The relationships between the roughness parameters based on the digitzation of the surface profile were analyzed. Since the measured value varied according to the degree of reflection and the variation of colors at the measuring point, rock joint surface was painted in white to minimize the influence of the surface conditions. The comparison of the measured values and roughness parameters before and after painting revealed the better consequence from measurement on the painted surfaces. Also, effect of measuring interval was studied. As measured interval was increased, roughness parameters were exponentially decreased. The incremental sequence of degree of decrease was $SDH\; i_{ave},\; i_{rms},\; SD_i,\;and\; R_ p-1$. As a result of comparison of parameters from pin-type measurement system and laser type measurement system, all value of parameters were higher when laser-type measurement system was used, except SDH.

Application of DFB Diode Laser Sensor to Reacting Flow (I) - Estimation and Application to Laminar Flames -

  • Park, Gyung-Min;Masashi Katsuki;Kim, Duck-Jool
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1550-1557
    • /
    • 2002
  • Diode laser sensor for measuring gas temperature and species concentration in combustion chamber was developed using 2.0 tim distributed feed back lasers. To evaluate the measurement sensitivity of diode laser sensor system, CO2 survey spectra near 2.0 Um were measured and compared with the calculated one. This diode laser absorption sensor was applied to measure gas temperatures in a premixed flat flame of CH$_4$-air mixture. Experimental results were in good agreement with the values by an R-type thermocouple within 6.12%. In addition, successful demonstration of measurement of gas temperature and species concentration in a soot flame showed the promising possibility of diode laser absorption sensors for practical combustion system with non-intrusive method.

Measurement of Spatial coherence function and Directional coherence function of Propagating Laser Beam by using Wigner Distribution Function

  • Lee, Chang-Hyuck;Kang, Yoon-Shik;Noh, Jae-Woo
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.02a
    • /
    • pp.449-450
    • /
    • 2009
  • The spatial coherence and propagation property of laser beam propagating through several optical components were studied experimentally by using the measurement of Wigner distribution function. It is shown experimentally that the Wigner function measurement yields total degree of coherence, beam quality parameter, and the near and the far field information of the propagating beam. More complete characterization of the laser beam was achieved by applying the Schmidt mode decomposition to the Wigner distribution function, spatial coherence function and directional coherence function. Fine details of coherence property are understood by the characteristics of the contributing eigenmodes.

  • PDF

A Study on the Stabilization Scheme of Optical Source for Precision Measurement (정밀측정을 위한 안정된 광원에 관한 연구)

  • 김지대;서호성;이동주
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.265-271
    • /
    • 2003
  • This study is for the stable optical source in order to get the precision measurement, which contributes to help the laser frequency and the output to be settled. The laser optical frequency is changed by the length of resonance cavity. The length variation of the laser resonance amplitude is affected by the thermal expansion of that system. So, we try not only to adjust the temperature of the laser tube using the heater for fine length of resonance cavity, but also to maintain the fixed temperature of the resonance cavity for outputting the safe laser optical frequency. Therefore, we must take materials with the thermal expansion of the supporting system, which is closer to it of the laser resonance cavity. Using the materials, we can promote to stabilize the temperature of it. In advance, we also plan to get the settlement of the laser frequency and the output in the long km, optimizing and stabilizing the system.

  • PDF

Tilt Measurement of Drilling Machine Using the Laser Interferometer (레이저 간섭계를 이용한 드릴링 머신의 틸트 측정)

  • 이승수;손영지;김순경;전언찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.479-484
    • /
    • 1996
  • This paper describes a method of measuring tilt motion. This method measures the tilt motion of drilling machines using a laser interferometer, a simple sliding linear bearing, measurement of the probe and the LSC(least square center) method. The next order of business is discussing the procedure of measurement. First, The measured position is considered to be the point of contact between the drill shank and the probe. The revolution of the drill axis delivers the point of contact to the probe. Second, because the laser interferometer is attached on the sliding linear bearing, any movement of probe influences laser reflector. Thus, the laser program displays the moving factor of laser reflector. Namely, this is tilt factor. Third. the points of measurement are a full circle which has 8 points (each are 45$^{\circ}$), After it is finished measuring the 8 points, let the spindle of the drilling machine move down about 5 cm. Repeating this procedure three times, we can get tilt motion's values which are calculated by LSC method. Many error factors affect the accurate measurement of tilt motion. However in this paper we ignore some error factors because they are less significant than tilt motion.

  • PDF

3D Depth Measurement System based on Parameter Calibration of the Mu1ti-Sensors (실거리 파라미터 교정식 복합센서 기반 3차원 거리측정 시스템)

  • Kim, Jong-Man;Kim, Won-Sop;Hwang, Jong-Sun;Kim, Yeong-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.125-129
    • /
    • 2006
  • The analysis of the depth measurement system with multi-sensors (laser, camera, mirror) has been done and the parameter calibration technique has been proposed. In the proposed depth measurement system, the laser beam is reflected to the object by the rotating mirror and again the position of the laser beam is observed through the same mirror by the camera. The depth of the object pointed by the laser beam is computed depending on the pixel position on the CCD. There involved several number of internal and external parameters such as inter-pixel distance, focal length, position and orientation of the system components in the depth measurement error. In this paper, it is shown through the error sensitivity analysis of the parameters that the most important parameters in the sense of error sources are the angle of the laser beam and the inter pixel distance.

  • PDF