• Title/Summary/Keyword: laser measurement

Search Result 2,029, Processing Time 0.032 seconds

Development of Typical On-Machine Measurement S/W based 3D modeler (3D 모델러 기반의 기상측정 소프트웨어 개발)

  • 김찬우;신장순;윤길상;조명우;박균명;유택인
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1581-1584
    • /
    • 2003
  • This paper proposed efficient manufacturing system using OMM(on-machine measurement) system and OMM operating S/W based 3D modeler. A Developed program connected tool machine with RS232C. It is composed two operating system that touch probe operating and laser displacement sensor operating system. A program for touch probe possible measure considered inspection feature and CAD data. The laser operating program is used inspection for profile. very small hole using installed feature data. This system is applied manufacturing line of mold(cavity, core) also verification of efficiency manufacturing process that production, reduction machining error of each process

  • PDF

Measurement of Material Property of Thin Film and Prediction of Residual Stress using Laser Scanning Method (레이저 주사법을 이용한 박막 물성 측정 및 잔류응력 예측)

  • Lee, Sang-Soon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.4 s.33
    • /
    • pp.49-53
    • /
    • 2004
  • Polymeric materials are widely used in the electronic industry as a common dielectric material or adhesive. The polymeric layer coated on Si substrate can be subjected to thermal stresses due to difference in thermal expansion coefficients. The mismatch in thermal properties between the polymeric layer and the substrate results in significant residual stresses. In this study, the thermal deformation is measured by a curvature measurement method using laser scanning, and the elastic modulus is calculated by an analytic model.

  • PDF

A Study on the Turbulent Characteristics of Rushton Turbine Mixer by Simultaneous Measurement of Velocity and Concentration Field with Stereo-PIV/PLIF Technique (Stereo-PIV/PLIF의 속도장과 농도장 동시측정 기법을 이용한 러쉬톤 교반기내 난류특성에 관한 연구)

  • Min, Young-Uk;Kim, Yun-Gi;Kim, Kyung-Chun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.694-699
    • /
    • 2003
  • Simultaneous measurement with PLIF(Planar Laser-Induced Fluorescence) and Stereo-PIV(Stereoscopic Particle Image Velocimetry) was performed to investigate the structural characteristics of flow field in Rushton Turbine Mixer. Instantaneous 3D velocity fields are measured by two 2K ${\times}$ 2K CCD cameras focused on an object plane with the angular displacement methods while the concentration fields are obtained through the measurement of the fluorescence intensity of Rhodamine B tracer excited by the second pulse of Nd:Yag laser light. Image distortion due to the camera view-angle is compensated by a mapping function. Finally, the spatial structures of turbulent mixing around Rushton turbine were identified by the calculation of cross-correlation fields between the velocity and concentration field.

  • PDF

Structure analysis and signal process to improve distance measuring accuracy of 3D laser scanner (3차원 레이저스캐너의 거리측정 정밀도 향상을 위한 시스템의 구조분석과 신호처리)

  • Oh, Dong-Geun;Yoo, Hyun-Kuk;Kim, Ho-Seop
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.245-247
    • /
    • 2010
  • This research presents both system structure analysis to improve performance of 3D laser scanner, which has time of flight method, and scheme to minimize distance measurement errors during signal process. With the help of reference source, we minimized the instability of electronic signal processing time and possibility of distance measurement errors. Furthermore, it helps easy alignment and accuracy of system by using fiber delay line and coupler.

  • PDF

The Development of 3D based On-Machine Measurement Operating System (3D 기반의 기상측정 운영시스템 개발)

  • 윤길상;최진화;조명우;김찬우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.145-152
    • /
    • 2004
  • This paper proposed efficient manufacturing system using the OMM (on-machine measurement) system. The OMM system is software based 3D modeler for inspection on machine and it is interfaced tool machine with RS232C. The software is composed of two inspection modules that one is touch probe operating module and the other is laser displacement sensor operating module. The module for touch probe has need of inspection feature that extracted it from CAD data. Touch probe moves to workpiece by three operating modes as follows: manual, general and automatic mode. The operating module of laser displacement sensor is used inspection for profile and very small hole. An Advantage of this inspection method is to be able to execute on-line inspection during machining or after it. The efficiency of proposed system which can predict and definite the machining errors of each process is verified, so the developed system is applied to inspect the mold-base(cavity, core).

Development of Straightness Measurement System for Improving Manufacturing Process Precision (ODN제조 공정 정밀도 향상을 위한 진직도 측정시스템 개발)

  • Kim, Eung Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.1
    • /
    • pp.17-21
    • /
    • 2019
  • In this paper, a high precision straightness measurement system has been developed at low cost using a visible laser and CMOS image sensor. CMOS image sensor detected optical image and the variation of straightness was calculated by image processing. We have observed that the error of the developed straightness measurement system was 0.9% when a distance of 3m between laser and image sensor. And it can be applied to 3D printer and any other areas.

Development of a Measurement System for Curved Ship Hull Plates with Multi-Slit Structured Light (다중 슬릿 구조화 광원을 이용한 곡판 측정장치 개발)

  • Lee, Hyunho;Lee, Don Jin;Huh, Man Joo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.3
    • /
    • pp.292-299
    • /
    • 2013
  • The measurement in the manufacturing process of curved ship hull plates still depends on wooden templates as a standard instrument. The metrology-enabled automation in the shipbuilding process has been challenged instead of line measurement with wooden templates. The developed measurement system consists of a CCD camera, multiple structured laser sources and 3-DOF motion device. The system carries out measurement of curved profiles for large scale plates by an optical triangulation method. The results of experiment conducted in a manufacturing shop demonstrate the accurate and robust performance.

Geometric Accuracy Measurement of Machined Surface Using the OMM (On the Machine Measurement) System

  • Kim, Sun-Ho;Lee, Seung-Woo;Kim, Dong-Hoon;Lee, An-Sung;Lim, Sun-Jong;Park, Kyoung-Taik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.4
    • /
    • pp.57-63
    • /
    • 2003
  • Machining information such as form accuracy and surface roughness is an important factor for manufacturing precise parts. To this regard, OMM (On the Machine Measurement) has been researched for last several decades to alternate CMM (Coordinate Measurement Machine) process. In this research, the OMM system with a laser displacement sensor was developed for measuring form accuracy and surface roughness of the machined workpiece on the machine tool. The surface roughness was estimated comparing the sensory signal with the reference data measured from master specimen. Also, form accuracy was determined from the moving averaged raw data. In addition, the geometric error map constructed beforehand using the geometric errors of the machine tool was used to compensate the obtained form accuracy. The overall performance was compared with CMM result, and verified the feasibility of the measurement system.

Development of On-machine Flatness Measurement Method (평면도 기상 측정 방법 개발)

  • 장문주;홍성욱
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.187-193
    • /
    • 2003
  • This paper presents an on-machine measurement method of flatness error fur surface machining processes. There are two kinds of on-machine measurement methods available to measure flatness errors in workpieces: i.e., surface scanning method and sensor scanning method. However, motion errors are often engaged in both methods. This paper proposes an idea to realize a measurement system of flatness errors and its rigorous application for estimation of motion errors of the positioning system. The measurement system is made by modifying the straightness measurement system, which consists of a laser, a CCD camera and processing system, a sensor head, and some optical units. The sensor head is composed of a retroreflector, a ball and ball socket, a linear motion guide unit and adjustable arms. The experimental .results show that the proposed method is useful to identify flatness errors of machined workpieces as well as motion errors of positioning systems.

Defect Length Measurement using Underwater Camera and A Laser Slit Beam

  • Kim, Young-Hwan;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.746-751
    • /
    • 2003
  • A method of measuring the length of defects on the wall of the spent nuclear fuel pool using the image processing and a laser slit beam is proposed. Since the defect monitoring camera is suspended by a crane and hinged to the crane hook, the camera viewing direction can not be adjusted to the orientation that is exactly perpendicular to the wall. Thus, the image taken by the camera, which is horizontally rotated along the axis of the camera supporting beam, is distorted and thus, the precise length can not be measured. In this paper, by using the LASER slit beam generator, the horizontally rotated angle of the camera is estimated. Once the angle is obtained, the distorted image can be easily reconstructed to the image normal to the wall. The estimation algorithm adopts a 3-dimensional coordinate transformation of the image plane where both the laser slit beam and the original image of the defects exist. The estimation equation is obtained by using the information of the beam projected on the wall and the parameters of this equation are experimentally obtained. With this algorithm, the original image of the defect taken at arbitrary rotated angle can be reconstructed to an image normal to the wall. From the result of a series of experiments, the accuracy of the defect is measured within 0.6 and 1.3 % error bound of real defect size in the air and underwater, respectively under 30 degree of the inclined angle of the laser slit beam generator. Also, the error increases as the inclined angle increases upto 60 degree. Over this angle, the defect length can not be measured since the defect image disappears. The proposed algorithm enables the accurate measurement of the defect length only by using a single camera and a laser slit beam.

  • PDF