• 제목/요약/키워드: laser measurement

검색결과 2,029건 처리시간 0.028초

Nondestructive Characterization of Materials Using Laser-Generated Ultrasound

  • Park, Sang-Woo;Lee, Joon-Hyun
    • International Journal of Reliability and Applications
    • /
    • 제5권1호
    • /
    • pp.1-13
    • /
    • 2004
  • It is recently well recognized that the technique for the one-sided stress wave velocity measurement in structural materials provides measurement in structural materials provides valuable information on the state of the material such as quality, uniformity, location of cracked or damaged area. This technique is especially effective to measure velocities of longitudinal and Rayleigh waves when access to only one surface of structure is possible. However, one of problems for one-sided stress wave velocity measurement is to get consistent and reliable source for the generation of elastic wave. In this study, the laser based surface elastic wave was used to provide consistent and reliable source for the generation of elastic wave into the materials. The velocities of creeping wave and Rayleigh wave in materials were measured by the one-sided technique using laser based surface elastic wave. These wave velocities were compared with bulk wave velocities such as longitudinal wave and shear wave velocities to certify accuracy of measurement. In addition, the mechanical properties such as poisson's ratio and specific modulus(E/p) were calculated with the velocities of surface elastic waves.

  • PDF

Four Degree-of-Freedom Geometric Error Measurement System with Common-Path Compensation for Laser Beam Drift

  • Qibo, Feng;Bin, Zhang;Cuifang, Kuang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권4호
    • /
    • pp.26-31
    • /
    • 2008
  • A precision four-degree-of-freedom measurement system has been developed for simultaneous measurement of four motion errors of a linear stage, which include straightness and angular errors, The system employs a retro-reflector to detect the straightness errors and a plane mirror to detect the angular errors. A common-path compensation method for laser beam drift is put forward, and the experimental results show that the influences of beam drift on four motion errors can be reduced simultaneously. In comparison with the API 5D laser measuring system, the accuracy for straightness measurement is about ${\pm}1.5{\mu}m$ within the measuring range of ${\pm}650{\mu}m$, and the accuracy for pitch and yaw measurements is about ${\pm}1.5$ arc-seconds within the range of ${\pm}600$ arc-seconds.

광간섭법을 이용한 변위/길이 측정시스템의 설계 및 해석 (Design and Analysis of Displacement/Length Measuring System Using Laser Interferometry)

  • 김진상;김승철;정성종
    • 한국정밀공학회지
    • /
    • 제14권10호
    • /
    • pp.151-156
    • /
    • 1997
  • A laser measurement system, a modified Michelson interferometer, which can accurately measure high speed length and displacement of servomechanisms by detecting a phase shift in the measurement beam using an optical interference was developed. A frequency stabilized laser source and a 20 fold frequency interpolation and digitizing circuit were applied to the system. The refra- ctive index of the ambient air was calibrated through the Edlens formula. The system achieved a resolution of /40, 16nm, a maximum allow-able measurement speed of 600nm/sec, and a length measure- ment range of 1500 mm. Performance of the system was evaluated on the machining center in short and long length measurements.

  • PDF

칼만 필터를 이용한 레이저 간섭계의 측정 정밀도 향상에 관한 연구 (A Study on the Improvement of Measurement Accuracy of Laser Interferometer using the Kalman filter)

  • 이재호;박태동;정준흥;박기헌
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 D
    • /
    • pp.1783-1784
    • /
    • 2006
  • A laser interferometer is the unique measurement device that can measure the range up to a few meters with sub-nano resolution and this characteristic makes it as the important sensing device for the emerging nano-mechatronics technologies. The laser interferometer, however, is very sensitive to the environments such as temperature, humidity, sound noises, vibrations and air turbulences and these factors result in a few hundred nano meter errors. There have been many efforts to reduce these environmental errors. The output of the laser interferometer is assumed to be the sum of a real displacement and a Markov process noise. The purpose of this paper is to develop Kalman filter algorithms to reduce the laser interferometer measurement errors by exploiting the information of displacements in position-servo systems.

  • PDF

마이크로 성형기에서 미세 변위 측정을 위한 레이저 간섭계 개발에 관한 연구 (A Study on Laser Interferometer Development for Micro Displacement Measurement in Micro Former)

  • 최재원;김대현;최경현;이석희;김승수;나경환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1195-1198
    • /
    • 2003
  • Micro former has been known as a useful tool for machining micro parts. It makes micro holes automatically with punches, a hole-shape die and material by rotation of crank shaft synchronously. Micro displacement in micro forming affects on the performance of machining because micro forming size is similar with its mechanical displacement. Therefore, the measurement of this micro displacement is essential to be guaranteed to obtain high forming precision in the whole machine as well as its devices. This paper addresses the development of a laser interferometer to measure micro displacement for a micro former. The laser interferometer is able to measure micro displacement during a few micro seconds with non-contact. For the experiment, a laser probe is installed on the optical table with optical devices and a micro displacement generating device. The velocity decoding board is also added to calculate doppler shift frequency directly. Finally simple experiments are conducted to confirm its functional operation.

  • PDF

깊이불연속 형상 측정을 위한 레이저 응용 하이브리드 초점법 (A Laser-Applied Hybrid Focus Method for the Measurement of a Surface Morphology with Depth Discontinuity)

  • 김경범;신영수;문순환
    • 한국정밀공학회지
    • /
    • 제23권9호
    • /
    • pp.111-118
    • /
    • 2006
  • A hybrid focus method with multiple laser slits is newly proposed for the measurement of surface morphology with depth discontinuity, and it is based on the integration of DFB and DFF. Rough depth information is estimated through calibration tables which are constructed by DFD with multiple laser slits, and then DFF is applied to only each specific depth range using the rough depth information resulting from DFD. The proposed hybrid method gives more accurate results than DFD and DFF, and faster measurement than DFF in the vicinity of depth discontinuity Its performance is verified through experiments of calibration blocks with sharp depth discontinuity.

신경망 회로를 이용한 레이저 간섭계의 적응형 오차보정 (Adaptive Nonlinearity Compensation in Laser Interferometer using Neural Network)

  • 허건행;이우람;유관호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.86-88
    • /
    • 2007
  • In the semiconductor manufacturing industry, the heterodyne laser interferometer plays as an ultra-precise measurement system. However, the heterodyne laser interferometer has some unwanted nonlinearity error which is caused from frequency-mixing. This is an obstacle to improve the measurement accuracy in nanometer scale. In this paper we propose a compensation algorithm based on RLS(recursive least square) method and artificial intelligence method, which reduce the nonlinearity error in the heterodyne laser interferometer. With the capacitance displacement sensor we get a reference signal which can be transformed into the intensity domain. Using the back-propagation Neural Network method, we train the network to track the reference signal. Through some experiments, we demonstrate the effectiveness of the proposed algorithm in measurement accuracy.

  • PDF

도플러방식과 헤테로다인 방식의 광간섭법을 병용한 절대높이 측정 정밀도 향상 (Improvement of Measurement Accuracy for Absolute Height by Using Two Types of Doppler and Heterodyne Optical Interferometry)

  • 안근식;장경영;문희관
    • 한국정밀공학회지
    • /
    • 제13권6호
    • /
    • pp.128-135
    • /
    • 1996
  • This paper proposes a high precision measurement technique to obtain the height of gage block with a few millimeter height. The proposed technique is consisted of two steps : In the first step, laser position transducer and electric micrometer are adopted to obtain a coarse value of the height of gage block, and then, in the second step, heterodyne laser interferometry is adopted to acquire the precision value. A new kind of phase detector is constructed in the low cost for the heterodyne interferometer and its linearity with ${\pm}1%$ is confirmed by experiment. Also measurement error factors due to enviroments are discussed and methodology to reduce such errors is proposed. Preliminary experiments are carried out for the gage blocks of as high as a few millimeter.

  • PDF

Using Pulse-Front Tilt to Measure Laser Pulses Less Than 100 Picoseconds in Duration

  • Jeong, Hoon
    • 한국광학회지
    • /
    • 제26권6호
    • /
    • pp.318-321
    • /
    • 2015
  • We demonstrate a frequency-resolved optical grating (FROG) device for measuring the intensity and phase versus time of several-tens-of-picoseconds laser pulses, using a thick nonlinear optical crystal. The huge pulse-front tilt generated by a holographic grating increases the temporal range of the device, which can make a single-shot measurement of laser pulses less than 100 ps in duration. To verify the measurement technique, we generate double pulses using a Michelson interferometer. The measured duration of a single pulse is about 300 fs and the measured maximum delay of two pulses is 60 ps, which implies that the proposed FROG device can measure laser pulses with maximum pulse width of about 120 ps.

Utilizing 3D Laser Scanning Technology for Remodeling Work of Building Inside

  • Lee, Jin-Duk;Han, Seung-Hee;Lee, Jae-Bin
    • International Journal of Contents
    • /
    • 제5권3호
    • /
    • pp.19-23
    • /
    • 2009
  • Laser scanning technology is a maturing measurement technology which is capable of obtaining 3D measurement data of objects with high-accuracy, high-resolution and in a short time. Laser scanners are used more and more as surveying instruments for various applications. This paper describes the procedure of 3D data acquirement using terrestrial LiDAR and section drawing extraction through a series of processing for remodeling the interior of a department building. Accurate drawings are needed for improvement construction of building interior. However if the design drawings of that time of construction work were lost or damaged or actual dimensions of drawings differ from those of design drawings, the interior should be resurveyed. In this study, the extraction process of interior plane figures were suggested through using laser scanning and related reverse engineering software