• 제목/요약/키워드: laser intensity

검색결과 783건 처리시간 0.023초

The Influence of the Initial Spot Size of a Double Half-Gaussian Hollow Beam on Its Propagation Characteristics in a the Turbulent Atmosphere

  • Yuan, Dong;Shu-Tao, Li;Jia-Yin, Guan;Xi-He, Zhang;Guang-Yong, Jin
    • Journal of the Optical Society of Korea
    • /
    • 제20권5호
    • /
    • pp.541-546
    • /
    • 2016
  • In this paper, by using the Rayleigh-Sommer field theory and the cross-spectral density function, the analytical expression for the intensity distribution of a double half-Gaussian hollow beam in a turbulent atmosphere is obtained. The influence of the initial spot size of this beam on its propagation properties in a turbulent atmosphere is simulated, and the intensity distributions for such beams with different spot sizes are obtained. The results show that the initial spot size has an important influence on the propagation properties in the near field, while this influence in the far field is very weak.

Optical Nonlinearity in Laser Heated Si (온도변화에 따른 Si의 비선형 광학적 성질)

  • 이상훈;이범구
    • Korean Journal of Optics and Photonics
    • /
    • 제1권2호
    • /
    • pp.135-141
    • /
    • 1990
  • Optical nonlinearity of laser heated Si with thickness of 160$\mu$m is investigated by pump-probe method. Si is heated by pdsed Nd:YAG laser of $TEM_{00}$-mode with pulse duration of 180$\mu$sec. Temperature change is monitored by observing transmittance change of probe light whose wavelength lies near band gap of Si. It is found that temperature rise is linearly proportional to incident laser intensity and the maximum temperat~re increment is measured to be $16^{\circ}C$ for the maximum incident intensity of 25KW/$\textrm{cm}^2$. From these results, the third order nonlinear susceptibility .d3) at the wavelength of 1.06$\mu$mis estimated to be $6.6\times10^{-5}$esu due to laser heating.

  • PDF

Double Exposure Laser Interference Lithography for Pattern Diversity using Ultraviolet Continuous-Wave Laser

  • Ma, Yong-Won;Park, Jun Han;Yun, Dan Hee;Gwak, Cheongyeol;Shin, Bo Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • 제26권2호
    • /
    • pp.9-14
    • /
    • 2019
  • The newly discovered properties of periodic nanoscale patterns have increasingly sparked research interests in various fields. Along this direction, it is worth mentioning that there had been rare studies conducted on interference exposure, a method of creating periodic patterns. Additionally, these few studies seemed to validate the existence of only exact quadrangle shapes and dot patterns. This study asserted the formation of wavy patterns associated to using multiple exposures of the ratio of the first exposure intensity to the second exposure intensity. Such patterns were designed and constructed herein via overlapping of two Gaussian beams relative to certain rotation angles, and with a submicron structure fabricated based on a 360-nm continuous-wave laser. Results confirmed that the proposed double exposure laser interference lithography is able to create circular, elliptical and wavy patterns with no need for complex optical components.

LASER-PRODUED PLASMA AS AN X-RAY SOURCE

  • 김효근
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 한국광학회 1991년도 제6회 파동 및 레이저 학술발표회 Prodeedings of 6th Conference on Waves and Lasers
    • /
    • pp.64-64
    • /
    • 1991
  • The interaction of high-intensity, focused, nanosecond laser light with matter results in the production of high-temperature plasma, which in turn emits an intense pulse of x rays. The x-ray spectrum consists of strong line components of several keV photon energy and broad continuum. Such an x-ray source provides many advantages over conventional ones for many applications. Pulse nature of the x-ray emission is well-suited for studying transient phenomena and for imaging living biological specimen. Recent experiments have also shown that the laser plasma x ray may be used for x ray lithography. These studies and other applications will be discussed in detail.

  • PDF

고에너지원을 이용한 폭발 현상 모델링

  • Lee, Gyeong-Cheol;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2007년도 제28회 춘계학술대회논문집
    • /
    • pp.349-352
    • /
    • 2007
  • In this paper, we describe the modeling of ablation based laser applications for innovative use in the military In the laser ignition system, a metal confinement is ablated with the high intensity pulsed energy, triggering a thermal ignition of the confined high explosives. The constitutive equations for the laser source, deformation of metals, and explosion of energetic materials are described.

  • PDF

A novel surface cleaning process using laser-induced breakdown of liquid (액체의 레이저 유기 절연파괴를 이용한 신개념 표면 세정 공정)

  • Jang, Deok-Suk;Lee, Jong-Myoung;Kim, Dong-Sik
    • Laser Solutions
    • /
    • 제12권4호
    • /
    • pp.17-25
    • /
    • 2009
  • The surface cleaning method based on the laser-induced breakdown (LIB) of gas and subsequent plasma and shock wave generation can remove small particles from solid surfaces. In the laser shock cleaning (LSC) process, a high-power laser pulse induces optical breakdown of the ambient gas above the solid surface covered with contaminant particles. The subsequently created shock wave followed by a high-speed flow stream detaches the particles. In this work, a novel surface cleaning process using laser-induced breakdown of liquid is introduced and demonstrated. LIB of a micro liquid jet increases the shock wave intensity and thus removes smaller particle than the conventional LSC method. Experiments demonstrate that the cleaning force and cleaning efficiency are also increased significantly by this method.

  • PDF

Effects of GaAsAl laser on the spinal neuronal activity induced by noxious mechanical stimulation (GaAsAl 레이저가 물리적 통증반응과 관련된 척수내 신경세포의 활성에 미치는 영향)

  • Song, Young-Wha;Lee, Young-Gu;Lim, Jong-Soo
    • Journal of Korean Physical Therapy Science
    • /
    • 제7권2호
    • /
    • pp.545-558
    • /
    • 2000
  • The present study was designed to investigate the effect of low power GaAsAl laser on Fos expression in the spinal cord induced by noxious mechanical stimulation. Noxious mechanical stimulation was applied to the right hind paw following 30min of low power laser treatment using different intensity and treatment point and the resulting Fos expression in the spinal cord dorsal horn was compared to that obtained in rats exposed only to the noxious mechanical stimulation. The results were summarized as follows: 1. In intact control rats, only a few Fos like immunoreactive(Fos-IR) neurons were evident in the lumbar spinal cord dorsal horn. Similarly, following prolonged inhalation anesthesia, Fos-IR neurons were absent in the dorsal horn of the lumbar spinal cord. In animals treated with noxious mechanical stimulation, neurons with nuclei exhibiting Fos immunostaining were distributied mainly in the medial half of ipsilateral laminae I-V at lumbar segments L3-5. These findings directly indicated that prolonged anesthesia used in this study did not affect the Fos expression in the spinal cord dorsal horn of intact animals and noxious mechanical stimulation treated animals. 2. In acupoint treated animals, 10mW of laser stimulation, not 3mW intensity, significantly reduced the number of Fos immunoreactive neurons in the spinal dorsal horn induced by noxious mechanical stimulation(P<.01). However, the supressive effect of low power laser stimulatin was not observed in 3m Wand 10m W of laser stimulation into non-acupoint. These data indicate that 10mW of low power laser stimulation into acupoint is capable of inhibiting the expression of Fos in the dorsal horn induced by noxious mechanical stimulation. In conclusion, these findings raise the possibility that low power laser stimulation into acupoint may be a promising alternative medicine therapy for the mechanical stimulation induced pain in the clinical field.

  • PDF

A STUDY OF ANALGESIC EFFECT ON PULP INDUCED BY PULSED Nd : YAG LASER (Pulsed Nd ; YGA 레이저의 치수마취효과에 관한 연구)

  • Kim, Do-Hyeong;Lee, Chang-Seop;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • 제24권1호
    • /
    • pp.301-312
    • /
    • 1997
  • The purpose of this study was to evaluate the analgesic effect on pulp induced by pulsed Nd : YAG laser according to the power density, irradiated time and the method of application (Non-contact vs contact) in vivo. Experiments were carried out on 90 volunteers who have sound 4 canines. Each canine was grouped by the intensity and the time of irradiation of pulsed Nd : YAG laser was measured. Mean EPT response(units) was measured at 5 min, 30 min, and 60 min after irradiation with various intensity(1.5-3W, 15-30Hz), irradiated time (1.5min, 3min), and application method (Non-contact and contact). The results were as follows: 1. 5 minutes after irradiation, the mean EPT response(units) was increased by 32 % in the non-contact method and by 35% in the contact method of application. Which showed significant difference in mean EPT response(units) compared to not-lased canine in each groups(P<0.05). 2. The mean EPT response(units) with irradiating condition according to the various laser intensity, and the irradiation time stastically did not show significant difference in each groups as time elapsed. 3. There was no significant difference between the non-contact and contact method in the mean EPT response(units). 4. The mean EPT response(units) returned to the baseline value within 30 miuntes. In regard to the above results, the analgesic effect on pulp induced by pulsed Nd : YAG laser resulted a slight increase of pulpal pain threshold, but it was not as high as to replace the role of drug analgesia as whole. This technique can be used for inducing pulpal analgesia as adjunct to other pain control methods and is needed to develop better analgesic effects.

  • PDF

The Conditions of a Holographic Homogenizer to Optimize the Intensity Uniformity (주기적인 홀로그램을 이용한 레이저 광 세기 균일화기에서 균일도를 최적화하기 위한 홀로그램의 조건)

  • Go, Chun-Soo;Oh, Yong-Ho;Lim, Sung-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제24권7호
    • /
    • pp.578-583
    • /
    • 2011
  • We report on the design of a holographic homogenizer composed of a periodic hologram and a condensing lens. If the hologram is periodic, the homogenizer is free from the alignment error of the incident laser beam. Holographic homogenizer also has an advantage of the flexibility in the size of the target beam. We calculated theoretically the Fraunhofer diffracted wave function when a rectangular laser beam is incident on a periodic hologram. The diffracted wave is the sum of sinc functions at regular distance. The width of each sinc function depends on the size of the incident laser beam and the distance between the sinc functions depends on the period of the hologram. We calculated numerically the diffracted light intensity for various ratios of the size of the incident laser beam to the period of the hologram. The results show that it is possible to make the diffracted beam uniform at a certain value of the ratio. The uniformity is high at the central part of the target area and low near the edge. The more sinc functions are included in the target area, the larger portion of the area becomes uniform and the higher is the uniformity at the central part. Therefore, we can make efficient homogenizer if we design a hologram so that the maximum number of the diffracted beams may be included in the target area.

Laser Intensity Dependence in Resonant Multiphoton Ionization of Hg Atoms (수은 원자에서의 공명 다광자 이온화 과정의 레이저 강도 의존성)

  • 한재민;정도영;차형기;김철중;이종민
    • Korean Journal of Optics and Photonics
    • /
    • 제1권1호
    • /
    • pp.7-11
    • /
    • 1990
  • Resonant multi photon ionization (RMPD of Hg atoms is studied by focusing a high-power laser into the ionization cell. The intermediate resonant state is taken as $6d^1D_2$ with the 4-photon resonance wavelength of 560.7 nm. The ionization signal is measured as Hg vapor pressure (0.1-3.0 Torr), laser intensity $(10-120GW/\textrm{cm}^2)$, and laser wavelength (559-569 nm) vary. AC Stark shift and line broadening of the resonant state $(6d^1D_2)$ are observed and the shift factor is measured to be $-0.6(cm^{-1}/GW/\textrm{cm}^2$. It is also observed that the ionization signal increases as the Hg vapor pressure increases up to a certain value of pressure, however, if the pressure further increases, the signal decreases. The order of non-linearity, which discribes the laser intensity dependence of ionization rate, is measured to be 3 at the resonance, and compared with the theoretical results.esults.

  • PDF