• Title/Summary/Keyword: laser etching

Search Result 256, Processing Time 0.031 seconds

Formation of PDP cell structure using Nd:YAG laser beam (Nd:YAG 레이저빔에 의한 PDP 방전셀의 구조 형성)

  • Ahn, Min-Young;Lee, Kyoung-Cheol;Lee, Hong-Kyu;Lee, Cheon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.129-132
    • /
    • 2000
  • The PDP(Plasma Display Panel) barrier rib material on the glass substrate was patterned for fabrication of the PDP cell using Nd:YAG laser(1064 nm) which can generate the second(532 nm) and forth(266 nm) harmonic wave by HGM(harmonic generation modules). At a scan speed of 20 ${\mu}m/s$ with the second harmonic wave(532 nm) of Nd:YAG laser, the etching threshold laser fluence of the PDP material was 6.5 $mJ/cm^2$ and a sample(thickness = 180 ${\mu}m$) on the glass substrate was removed clearly at a laser fluence of 19.5 $mJ/cm^2$. In order to increase the throughput of the fabrication we divided a single-beam into multi-beams by using a metal mask between the sample and the focusing lens. As a result, 10 lines of PDP cell were formed by one laser beam scanning at a scan speed of 200 ${\mu}m/s$ and a laser fluence of 2.86 $J/cm^2$.

  • PDF

Parametric Study of Picosecond Laser Hole Drilling for TSV (피코초 레이저의 공정변수에 따른 TSV 드릴링 특성연구)

  • Shin, Dong-Sig;Suh, Jeong;Kim, Jeng-O
    • Laser Solutions
    • /
    • v.13 no.4
    • /
    • pp.7-13
    • /
    • 2010
  • Today, the most common process for generating Through Silicon Vias (TSVs) for 3D ICs is Deep Reactive Ion Etching (DRIE), which allows for high aspect ratio blind holes with low surface roughness. However, the DRIE process requires a vacuum environment and the use of expensive masks. The advantage of using lasers for TSV drilling is the higher flexibility they allow during manufacturing, because neither vacuum nor lithography or masks arc required and because lasers can be applied even to metal and to dielectric layers other than silicon. However, conventional nanosecond lasers have the disadvantage of causing heat affection around the target area. By contrast, the use of a picosecond laser enables the precise generation of TSVs with less heat affected zone. In this study, we conducted a comparison of thermalization effects around laser-drilled holes when using a picosecond laser set for a high pulse energy range and a low pulse energy range. Notably, the low pulse energy picosecond laser process reduced the experimentally recast layer, surface debris and melts around the hole better than the high pulse energy process.

  • PDF

Etching Characteristics of $Ge_2Sb_2Te_5$ Using High-Density Helicon Plasma for the Nonvolatile Phase Change Memory Applications (헬리콘 플라즈마를 이용한 $Ge_2Sb_2Te_5(GST)$ 상변화 재료의 식각 특성 검토)

  • Yoon, Sung-Min;Lee, Nam-Yeal;Ryu, Sang-Ouk;Shln, Woong-Chul;Yu, Byoung-Gon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.203-206
    • /
    • 2004
  • For the realization of PRAM, $Ge_2Sb_2Te_5$ (GST) has been employed for the phase transition between the crystal and amorphous states by electrical joule heating. Although there has been a vast amount of results concerning the GST in material aspect for the laser-induced optical storage disc applications, the process-related issues of GST for the PRAM applications have not been reported. In this work, the etching behaviors of GST were investigated when the processing conditions were varied in the high-density helicon plasma. The etching parameters of RF main power, RF bias power, and chamber pressure were fixed at 600 W, 150 W, and 5 mTorr, respectively. For the etching processes, gas mixtures of $Ar/Cl_2$, $Ar/CF_4$, and $Ar/CHF_3$ were employed, in which the etching rates and etching selectivities of GST thin film in given gas mixtures were evaluated. From obtained results, it is found that we can arbitrarily design the etching process according to given cell structures and material combinations for PRAM cell fabrications.

  • PDF

A Study on a Laser Dicing and Drilling Machine for Si Thin-Wafer (UV 레이저를 이용한 Si Thin 웨이퍼 다이싱 및 드릴링 머신)

  • Lee, Young-Hyun;Choi, Kyung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.478-480
    • /
    • 2004
  • 다이아몬드 톱날을 이용한 얇은 Si 웨이퍼의 기계적인 다이싱은 chipping, crack 등의 문제점을 발생시킨다. 또한 stacked die 나 multi-chip등과 같은 3D-WLP(wafer level package)에서 via를 생성하기 위해 현재 사용되는 화학적 etching은 공정속도가 느리고 제어가 힘들며, 공정이 복잡하다는 문제점을 가지고 있다. 이러한 문제점을 해결하기 위해 현재 연구되고 있는 분야가 레이저를 이용한 웨이퍼 다이싱 및 드릴링이다. 본 논문에서는 UV 레이저를 이용한 얇은 Si 웨이퍼 다이싱 및 드릴링 시스템에 대해 소개하고, 웨이퍼 다이싱 및 드릴링 실험결과를 바탕으로 적절한 레이저 및 공정 매개변수에 대해 설명한다.

  • PDF

A study of excimer laser ablation of polymer (폴리머의 엑시머레이저 어블레이션에 관한 연구)

  • Shin, Dong-Sik;Lee, Je-Hoon;Seo, Jung;Kim, Do-Hoon
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1857-1860
    • /
    • 2003
  • The ablative decomposition mechanism of PMMA(polymethyt methacrylate), PET(polyethylene terephthalate) and PC(polycarbonate) with KrF excimer laser(λ: 248nm, pulse duration: 5ns) is investigated. The UV/Vis spectrometer analysis showed that PMMA is a weak absorber and PET, PC are a strong absorber at the wavelength of 248nm. The results(surface debris, melt, etch depth, etching shape) from drilling and direct writing experiments imply that ablation mechanism of PMMA is dominated by photothermal process, while that of PET, PC are dominated by photochemical process.

  • PDF

Modeling of Laser Micromachining of Quasi-three-dimensional Shapes (레이저를 이용한 준삼차원 미소형상 가공 모델링)

  • Shin Kui Sung;Yoon Kyung Koo;Whang Kyung Hyun;Bang Se Yoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.79-87
    • /
    • 2005
  • This paper summarizes the work on the development of a simulation program for modelling the process of machining quasi-three dimensional shape with the excimer laser beam on a constantly moving polymers. Relatively simple masks of rectangle, triangle and half circle shape are considered. The etching depth is calculated by considering the number of laser pulses irradiated on the specimen surface. It was found that similar shapes as experimental results can be obtained by choosing suitable parameters of moving velocity, moving distance and mask sizes.

EFFECT OF DENTINAL TUBULES ORIENTATION ON PENETRATION PATTERN OF DENTIN ADHESIVES USING CONFOCAL LASER SCANNING MICROSCOPY (상아세관의 주행방향에 따른 상아질 접착제의 침투양상에 대한 공초점레이저주사현미경 연구)

  • Kim, Dong-Jun;Hwang, Yun-Chan;Kim, Sun-Ho;Oh, Won-Mann;Hwang, In-Nam
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.5
    • /
    • pp.392-401
    • /
    • 2003
  • The purpose of this study was to evaluate the penetration pattern of dentin adhesives according to the orientation of dentinal tubules with confocal laser scanning microscopy. Specimens having perpendicular. parallel and oblique surface to dentinal tubules were fabricated. The primer of dentin adhesives (ALL $BOND^{\circledR}{\;}2,{\;}CLEARFIL^{TM}$ SE BOND and PQ1) was mixed with fluorescent material. rhodamine B isothio-cyanate (Aldrich Cherm. CO., Milw., USA), It was applied to the specimens according to the instructions of manufactures. The specimens were covered with composite resin (Estelite, shade A2) and then cut to a thickness of 500$\mu\textrm{m}$ with low speed saw (Isomet^{TM}, Buehler. USA). The adhesive pattern of dentin adhesives were observed by fluorescence image using confocal laser scanning microscopy. The results were as follows. 1. For the groups with tubules perpendicular to bonded surface. funnel shape of resin tag was observed in all specimen. However. resin tags were more prominent in phosphoric acid etching system (ALL $BOND^{\circledR}$ 2 and PQ1) than self etching system ($CLEARFIL^{TM}$ SE BOND). 2. For the groups with tubules parallel to bonded surface. rhodamine-labeled primer penetrated into peritubular dentin parallel to the orientation of dentinal tubules. But rhodamine-labeled primer of PQ1 diffused more radially into surrounding intertubular dentin than other dentin adhesive systems. 3. For the groups with tubules oblique to bonded surface. resin tags appeared irregular and discontinuous. But they penetrated deeper into dentinal tubules than other groups.

Maskless etching of the PDP barrier rib using focused laser beam (집속 레이저 빔에 의한 PDP 격벽의 마스크레스 식각)

  • Ahn, Min-Young;Lee, Kyoung-Cheol;Lee, Hong-Kyu;Choi, Hoon-Young;Lee, Cheon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1849-1851
    • /
    • 1999
  • The PDP(Plasma Display Panel) barrier rib was fabricated by focused $Ar^+$ laser ($\lambda$=514nm) and Nd:YAG($\lambda$=532, 266 nm) laser irradiation. The depth of the etched groove increases with increasing a laser fluence. and decreasing a scan speed. Using the second harmonic of the Nd:YAG laser, the threshold laser fluence was $6.5mJ/cm^2$ for the sample of PDP barrier rib dried at $120^{\circ}C$. The thickness of $150{\mu}m$ of the sample on the glass was etched without any damage on the glass substrate by fluence of $19.5J/cm^2$. The barrier rib sample on hot plate was etched by Nd:YAG laser(532 nm) as increasing a temperature of the sample. In this case, the etch rate was $95{\mu}m/s$, $190{\mu}m/s$ at room temperature, $175^{\circ}C$ respectively.

  • PDF

Nanoscale Patterning Using Femtosecond Laser and Self-assembled Monolayers (SAMs) (펨토초레이저와 자기조립박막을 이용한 나노스케일 패터닝)

  • Chang, Won-Seok;Choi, Moo-Jin;Kim, Jae-Gu;Cho, Sung-Hak;Whang, Kyung-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1270-1275
    • /
    • 2004
  • Standard positive photoresist techniques were adapted to generate nano-scale patterns of gold substrate using self-assembled monolayers (SAMs) and femtosecond laser. SAMs formed by the adsorption of alkanethiols onto gold substrate are employed as very thin photoresists, Alkanethiolates formed by the adsorption of alkanethiols are oxidized on exposure to UV light in the presence of air to alkylsulfonates. Specifically, it is known that deep UV light of wavelength less than 200nm is necessary for oxidation to occur. In this study, ultrafast laser of wavelength 800nm and pulse width 200fs is applied for photolithography. Results show that ultrafast laser of visible range wavelength can replace deep UV laser source for photo patterning using thin organic films. Femtosecond laser coupled near-field scanning optical microscopy facilitates not only the patterning of surface chemical structure, but also the creation of three-dimensional nano-scale structures by combination with suitable etching methods.

A Study on Rapid Fabrication of Micro Lens Array using 355nm UV Laser Irradiation (355nm UV 레이저를 이용한 마이크로 렌즈 어레이 쾌속 제작에 관한 연구)

  • Je, S.K.;Park, S.H.;Choi, C.K.;Shin, B.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.4
    • /
    • pp.310-316
    • /
    • 2009
  • Micro lens array(MLA) is widely used in information technology(IT) industry fields for various applications such as a projection display, an optical power regulator, a micro mass spectrometer and for medical appliances. Recently, MLA have been fabricated and developed by using a reflow method having the processes of micro etching, electroplating, micro machining and laser local heating. Laser thermal relaxation method is introduced in marking of microdots on the surface of densified glass. In this paper, we have proposed a new direct fabrication process using UV laser local thermal-expansion(UV-LLTE) and investigated the optimal processing conditions of MLA on the surface of negative photo-resist material. We have also studied the 3D shape of the micro lens obtained by UV laser irradiation and the optimal process conditions. And then, we made chrome mold by electroplating. After that, we made MLA using chrome mold by hot embossing processing. Finally, we have measured the opto-physical properties of micro lens and then have also tested the possibility of MLA applications.