• Title/Summary/Keyword: larval development

Search Result 555, Processing Time 0.022 seconds

Current status and future of insect smart factory farm using ICT technology (ICT기술을 활용한 곤충스마트팩토리팜의 현황과 미래)

  • Seok, Young-Seek
    • Food Science and Industry
    • /
    • v.55 no.2
    • /
    • pp.188-202
    • /
    • 2022
  • In the insect industry, as the scope of application of insects is expanded from pet insects and natural enemies to feed, edible and medicinal insects, the demand for quality control of insect raw materials is increasing, and interest in securing the safety of insect products is increasing. In the process of expanding the industrial scale, controlling the temperature and humidity and air quality in the insect breeding room and preventing the spread of pathogens and other pollutants are important success factors. It requires a controlled environment under the operating system. European commercial insect breeding facilities have attracted considerable investor interest, and insect companies are building large-scale production facilities, which became possible after the EU approved the use of insect protein as feedstock for fish farming in July 2017. Other fields, such as food and medicine, have also accelerated the application of cutting-edge technology. In the future, the global insect industry will purchase eggs or small larvae from suppliers and a system that focuses on the larval fattening, i.e., production raw material, until the insects mature, and a system that handles the entire production process from egg laying, harvesting, and initial pre-treatment of larvae., increasingly subdivided into large-scale production systems that cover all stages of insect larvae production and further processing steps such as milling, fat removal and protein or fat fractionation. In Korea, research and development of insect smart factory farms using artificial intelligence and ICT is accelerating, so insects can be used as carbon-free materials in secondary industries such as natural plastics or natural molding materials as well as existing feed and food. A Korean-style customized breeding system for shortening the breeding period or enhancing functionality is expected to be developed soon.

The effects of temperatures on the development of Oriental -tobacco budmoth, Heliothis assulta Guenee, and control effects of Thuricide $HP^{(R)}$- (고추담배나방의 생태 및 방제에 관한 연구 -온도가 담배나방의 생육에 미치는 영향 및 Thuricide $HP^{(R)}$의 방제 효과-)

  • Chung C. S.;Hyun J. S.
    • Korean journal of applied entomology
    • /
    • v.19 no.1 s.42
    • /
    • pp.57-65
    • /
    • 1980
  • The oriental tobacco budmoth, Heliothis assulta Guenee were reared under various temperatures; $20^{\circ}C,\;25^{\circ}C,\;30^{\circ}C$ and the control effects of Thuricide $HP^{(R)}$ were examined. The results obtained were as fellows: 1. The adult longevity of oriental tobacco budmoth was 11.35 days, and 3.00 days for preovipositional period, 4.75 days for ovipositional Period, and 3.50 days for postovipositional period. 2. The total number of eggs laid by a female were 307 at $20^{\circ}C$, 413 at $25^{\circ}C$ and 189 at $30^{\circ}C$. The number of eggs per female per day were 64.05 in average. 3. The average egg Periods were 7.71 days at $20^{\circ}C$, 4.12 days at $25^{\circ}C$ and 3.58 days at $30^{\circ}C$ and the hatchiabilities were $71.25\%,\;78.49\%\;and\;81.05\%$ at the respective incubation temperatures. 4. The larval developmental periods were 43.51 days at $20^{\circ}C$, 21.79 days at $25^{\circ}C$ and 18.05 days at $25^{\circ}C$ and the mortalities were $80.70\%,\;95.93\%$ and $87.01\%$ at the respective temperatures. 5. The pupal developmental periods were 24.22 days at $20^{\circ}C$, 12.36 days at $25^{\circ}C$ and 11.50 days at $30^{\circ}C$ and the mortalities at the respective temperatures were $18.18\%,\;42.11\%\;and\;40.00\%$. 6. The calculated threshold temperatures for the development were $11.61^{\circ}C$ for the eggs, $11.96^{\circ}C$ for the larvae, and $10.06^{\circ}C$ for the pupae. The estimated total effective temperatures were 60.41 day degrees for e eggs, 319.35 day degrees for the larvae, 222.66 day degrees for the pupae, and overall total effective temperatures, however, would be ranged 640-660 day degrees if the reproductive period of the adult was considered. 7. The relationship between the overall developmental periods and the rearing temperature could be Y=-4.272X+155.39 (r=0.9105), where Y; number of days required to complete the life cycle, X; treated temperatures. 8. The control effects of Thuricide $HP^{(R)}$ were $73.43\%$ for spray and $58.22\%$ for bait applications.

  • PDF

Study on Spring Cocoon Crops with the Leaf Produced in the Mulberry Field close to the Totacco Field (개량 Mulching 담배밭 부근뽕잎이 춘잠작에 미치는 영향에 관한 연구)

  • 이상풍;김정배;김계명;박광준
    • Journal of Sericultural and Entomological Science
    • /
    • v.16 no.1
    • /
    • pp.67-75
    • /
    • 1974
  • The studies are to know how much cocoon crops is damaged by the stained leaf with nicotine produced from the tobacco field cultivated in mulching system in spring season and by residual nicotine in autumn season. Furthermore, the new knowledges are to make both industries keep up with their development. In spring season mulberry Held is located higher on the West-North of tobacco held below 20 degrees of slope and with 36 per cent of East-South wind and 18 per cent of South wind blowing from tobacco fold to the mulberry fold. In addition, silkworm larvae are fed with the mulberry leaf produced in the different plots placing by the different distances, l0m, 25m, 50m, 80m, and loom far from the tobacco Held as a control and it is also considered that narcotic larvae including the dead larvae are not observed. On the other hand, it is noted that better leaf quality and abundant growth of mulberry tree is produced from the mulberry fold closer to the tobacco field and with a low slope. 1) Maximum weight of larval body at the 5th stage is damaged by the stained leaf with the nicotine up to 25m far from the tobacco held. 2) The larvae fed with the mulberry leaf in mulberry Held up to 25m far from the tobacco fold produce small number of the fresh cocoons per 1 liter. 3) Low single cocoon weight and low cocoon shell weight are produced by the poison damaged larvae fed with the mulberry. leaf up to 25m far from the tobacco field and weight of cocoon shell is damaged higher than the single cocoon weight. It is resulted in low percentage of cocoon shell. 4) Cocoon yield including the double cocoon from 10,000 larvae is decreased by the larvae fed with the stained leaf in the mulberry fold up to 25m far from the tobacco fold and 19 per cent of cocoon yield is decreased with 2.4kg of cocoon yield in l0m plot and with 2.5kg of cocoon yield in 25m plot at the first season and at the 2nd season with 1.8kg o( cocoon yield in l0m plot and with 11.5kg of cocoon yield in 25m plot, 11 per cent and 9 per cent of cocoon yield including double cocoon from 10,000 larvae is decreased, as compared with the control, respectively. With these results, it is observed that nicotine damage is occurred to the silkworm larvae if the larvae are fed with the leaf in the mulberry Held within 25m-50m far from the tobacco field.

  • PDF

STUDIES ON THE PROPAGATION OF ABALONE (전복의 증식에 관한 연구)

  • PYEN Choong-Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.3 no.3
    • /
    • pp.177-186
    • /
    • 1970
  • The spawning of the abalone, Haliotis discus hannai, was induced In October 1969 by air ex-position for about 30 minutes. At temperatures of from 14.0 to $18.8^{\circ}C$, the youngest trochophore stage was reached within 22 hours after the egg was laid. The trochophore was transformed into the veliger stage within 34 hours after fertilization. For $7\~9$ days after oviposition the veliger floated in sea water and then settled to the bottom. The peristomal shell was secreted along the outer lip of the aperture of the larval shell, and the first respiratory pore appears at about 110 days after fertilization. The shell attained a length of 0.40 mm in 15 days, 1.39 mm in 49 days, 2.14 mm in 110 days, 5.20 mm in 170 days and 10.00 mm in 228 days respectively. Monthly growth rate of the shell length is expressed by the following equation :$L=0.9981\;e^{0.18659M}$ where L is shell length and M is time in month. The density of floating larvae in the culture tank was about 10 larvae per 100 co. The number of larvae attached to a polyethylene collector ($30\times20\;cm$) ranged from 10 to 600. Mortality of the settled larvae on the polyethylene collector was about $87.0\%$ during 170 days following settlement. The culture of Nauicula sp. was made with rough polyethylene collectors hung at three different depths, namely 5 cm, 45 cm and 85 cm. At each depth the highest cell concentration appeared after $15\~17$ days, and the numbers of cells are shown as follows: $$5\;cm\;34.3\times10^4\;Cells/cm^2$$ $$45\;cm\;27.2\times10^4\;Cells/cm^2$$ $$85\;cm\;26.3\times10^4\;Cells/cm^2$$ At temperatures of from 13.0 to $14.3^{\circ}C$, the distance travelled by the larvae (3.0 mm In shell length) averaged 11.36 mm for a Period of 30 days. Their locomation was relatively active between 6 p.m. and 9 p.m., and $52.2\%$ of them moved during this period. When the larvae (2.0 mm in shell length) were kept in water at $0\;to\;\~1.8^{\circ}C$, they moved 1.15cm between 4 p.m. and 8 p.m. and 0.10 cm between midnight and 8 a.m. The relationships between shell length and body weight of the abalone sampled from three different localities are shown as follows: Dolsan-do $W=0.2479\;L^{2.5721}$ Huksan-do $W=0.1001\;L^{3.1021}$ Pohang $W=0.9632\;L^{2.0611}$

  • PDF

Studies on the Propagation of the Freshwater Prawn, Macrobrachium nipponense (De Haan) Reared in the Laboratory 2. Life History and Seedling Production (담수산 새우, Macrobrachium nipponense (De Haan)의 증${\cdot}$양식에 관한 생물학적 기초연구 2. 생활사 및 종묘생산에 관한 연구)

  • KWON Chin-Soo;LEE Bok-Kyu
    • Journal of Aquaculture
    • /
    • v.5 no.1
    • /
    • pp.29-67
    • /
    • 1992
  • Life cycle and seed production of the freshwater prawn, Macrobrachium nipponense, were studied and the results are as follows : 1. Larval development : Embryos hatched out as zoea larvae of 2.06 mm in mean body length. The larvae passed through 9 zoea stages in $15{\~}20$ days and then metamorphosed into postlarvae measuring 5.68 mm in mean body length. Each zoea stage can be identified based on the shapes of the first and second antennae, exo- and endopodites of the first and second pereiopods, telson and maxillae. 2. Environmental requirements of zoea larvae : Zoea larvae grew healthy when fed with Artemia nauplii. Metamorphosing rate was $65{\~}72{\%}$ at $26{\~}28\%$ and $7.85{\~}8.28\%_{\circ}Cl.$. The relationship between the zoeal period (Y in days) and water temperature (X in $^{\circ}C$) is expressed as Y=46.0900-0.9673X. Zoeas showed best survival in a water temperature range of $26{\~}32^{\circ}C$ (optimum temperature $28^{\circ}C$), at which the metamorphosing rate into postlarvae was $54{\~}72\%$ The zoeas survived more successfully in chlorinity range of $4.12{\~}14.08{\%_{\circ}}Cl.$, (optimum chlorinity $7.6{\~}11.6\;{\%_{\circ}}Cl.$.), at which the metamorphosing rate was $42{\~}76{\%}$. The whole zoeal stages tended to be longer in proportion as the chlorinity deviated from the optimum range and particularly toward high chlorinity. Zoeas at all stages could not tolerate in the freshwater. 3. Environmental requirements of postlarvae and juveniles : Postlarvae showed normal growth at water temperatures between $24{\~}32^{\circ}C$ (optimun temperature $26{\~}28^{\circ}$. The survival rate up to the juvenile stage was $41{\~}63{\%}$. Water temperatures below $24^{\circ}C$ and above $32^{\circ}$ resulted in lower growth, and postlarvae scarcely grew at below $17^{\circ}C$. Cannibalism tended to occur more frequently under optimum range of temperatures. The range of chlorinity for normal growth of postlarvae and juveniles was from 0.00 (freshwater) to $11.24{\%_{\circ}}Cl.$, at which the survival rate was $32{\~}35\%$. The postlarvae grew more successfully in low chlorinities, and the best growth was found at $0.00\~2.21{\%_{\circ}}Cl.$. The postlarvae and juveniles showed better growth in freshwater but did not survive in normal sea water. 4. Feeding effect of diet on zoea Ilarvae : Zoea larvae were successfully survived and metamorposed into postlarvae when fed commercial artificial plankton, rotifers, and Artemia nauplii in the aquaria. However, the zoea larvae that were fed Artemia nauplii and reared in Chlorella mixed green water showed better results. The rate of metamorphosis was $68\~{\%}75$. The larvae fed cow live powder, egg powder, and Chlorella alone did not survive. 5. Diets of postlarvae, juveniles and adults : Artemia nauplii and/or copepods were good food for postlarvae. Juveniles and adults were successfully fed fish or shellfish flesh, annelids, corn grain, pelleted feed along with viscera of domestic animals or fruits. 6. Growth of postlarvae, juveniles and adults : Under favorable conditions, postlarvae molted every five or six days and attained to the juvenile stage within two months and they reached 1.78 cm in body length and 0.17 g in body weight. The juveniles grew to 3.52 cm in body length and 1.07 g in body weight in about four months. Their sexes became determinable based on the appearance of male's rudimental processes (a secondary sex character) on the endopodites of second pereiopods of males. The males commonly reached sexual maturity in seven months after attaining the postlarvae stage and they grew to 5.65 cm in body length and 3.41 g in body weight. Whereas the females attained sexual maturity within six to seven months, when they measured 4.93 cm in body length and 2.43 g in body weight. Nine or ten months after hatching, the males grew $6.62{\~}7.14$ cm in body length and $6.68{\~}8.36$ g in body weight, while females became $5.58{\~}6.08$ cm and $4.04{\~}5.54$ g. 7. Stocking density : The maximum stocking density in aquaria for successful survival and growth was $60{\~}100$ individuals/$\ell$ for zoeas in 30-days rearing (survival rate to postlarvae, $73{\~}80{\%}$) ; $100{\~}300$ individuals/$m^2$ for postlarvae of 0.57 cm in body length (survival rate for 120 days, $78{\~}85{\%}$) ; $40{\~}60$ individuals/$m^2$ for juveniles of 2.72 cm in body length (survival rate for 120 days, $63{\~}90{\%}$) : $20{\~}40$ individuals/$m^2$ for young prawns of 5.2 cm in body length (survival rate for 120 days, $62\~90{\%}$) ; and $10\~30$ individuals/$m^2$ for adults of 6.1 cm in body length (survival rate for 60 days, $73\~100{\%}$). The stocking density of juveniles, youngs and adults could be increased up to twice by providing shelters.

  • PDF