• Title/Summary/Keyword: large-span structures

Search Result 269, Processing Time 0.026 seconds

An efficient approach for model updating of a large-scale cable-stayed bridge using ambient vibration measurements combined with a hybrid metaheuristic search algorithm

  • Hoa, Tran N.;Khatir, S.;De Roeck, G.;Long, Nguyen N.;Thanh, Bui T.;Wahab, M. Abdel
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.487-499
    • /
    • 2020
  • This paper proposes a novel approach to model updating for a large-scale cable-stayed bridge based on ambient vibration tests coupled with a hybrid metaheuristic search algorithm. Vibration measurements are carried out under excitation sources of passing vehicles and wind. Based on the measured structural dynamic characteristics, a finite element (FE) model is updated. For long-span bridges, ambient vibration test (AVT) is the most effective vibration testing technique because ambient excitation is freely available, whereas a forced vibration test (FVT) requires considerable efforts to install actuators such as shakers to produce measurable responses. Particle swarm optimization (PSO) is a famous metaheuristic algorithm applied successfully in numerous fields over the last decades. However, PSO has big drawbacks that may decrease its efficiency in tackling the optimization problems. A possible drawback of PSO is premature convergence leading to low convergence level, particularly in complicated multi-peak search issues. On the other hand, PSO not only depends crucially on the quality of initial populations, but also it is impossible to improve the quality of new generations. If the positions of initial particles are far from the global best, it may be difficult to seek the best solution. To overcome the drawbacks of PSO, we propose a hybrid algorithm combining GA with an improved PSO (HGAIPSO). Two striking characteristics of HGAIPSO are briefly described as follows: (1) because of possessing crossover and mutation operators, GA is applied to generate the initial elite populations and (2) those populations are then employed to seek the best solution based on the global search capacity of IPSO that can tackle the problem of premature convergence of PSO. The results show that HGAIPSO not only identifies uncertain parameters of the considered bridge accurately, but also outperforms than PSO, improved PSO (IPSO), and a combination of GA and PSO (HGAPSO) in terms of convergence level and accuracy.

Reliable multi-hop communication for structural health monitoring

  • Nagayama, Tomonori;Moinzadeh, Parya;Mechitov, Kirill;Ushita, Mitsushi;Makihata, Noritoshi;Ieiri, Masataka;Agha, Gul;Spencer, Billie F. Jr.;Fujino, Yozo;Seo, Ju-Won
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.481-504
    • /
    • 2010
  • Wireless smart sensor networks (WSSNs) have been proposed by a number of researchers to evaluate the current condition of civil infrastructure, offering improved understanding of dynamic response through dense instrumentation. As focus moves from laboratory testing to full-scale implementation, the need for multi-hop communication to address issues associated with the large size of civil infrastructure and their limited radio power has become apparent. Multi-hop communication protocols allow sensors to cooperate to reliably deliver data between nodes outside of direct communication range. However, application specific requirements, such as high sampling rates, vast amounts of data to be collected, precise internodal synchronization, and reliable communication, are quite challenging to achieve with generic multi-hop communication protocols. This paper proposes two complementary reliable multi-hop communication solutions for monitoring of civil infrastructure. In the first approach, termed herein General Purpose Multi-hop (GPMH), the wide variety of communication patterns involved in structural health monitoring, particularly in decentralized implementations, are acknowledged to develop a flexible and adaptable any-to-any communication protocol. In the second approach, termed herein Single-Sink Multi-hop (SSMH), an efficient many-to-one protocol utilizing all available RF channels is designed to minimize the time required to collect the large amounts of data generated by dense arrays of sensor nodes. Both protocols adopt the Ad-hoc On-demand Distance Vector (AODV) routing protocol, which provides any-to-any routing and multi-cast capability, and supports a broad range of communication patterns. The proposed implementations refine the routing metric by considering the stability of links, exclude functionality unnecessary in mostly-static WSSNs, and integrate a reliable communication layer with the AODV protocol. These customizations have resulted in robust realizations of multi-hop reliable communication that meet the demands of structural health monitoring.

Seismic Behavior of Bridges Considering Ground Motion Spatial Variation (공간적으로 변화하는 입력지진으로 인한 교량의 지진거동특성)

  • Bae, Byung Ho;Choi, Kwang Kyu;Kang, Seung Woo;Song, Si Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.759-768
    • /
    • 2015
  • The ground motions of large dimensional structures such as long span bridges at different stations during an earthquake, are inevitably different, which is known as the ground motion spatial variation effect. There are many causes that may result in the spatial variability in seismic ground motion, e.g., the wave passage effect due to the different arrival times of waves at different locations; the loss of coherency due to seismic waves scattering in the heterogeneous medium of the ground; the site amplification effect owing to different local soil properties. In previous researches, the site amplification effects have not been considered or considered by a single-layered soil model only. In this study, however, the ground motion amplification and filtering effects are evaluated by multi-layered soil model. Spatially varying ground motion at the sites with different number of layers, depths, and soil characteristics are generated and the variation characteristics of ground motion time histories according to the correlation of coherency loss function and soil conditions are evaluated. For the bridge system composed of two unit bridges, seismic behavior characteristics are analyzed using the generated seismic waves as input ground motion. Especially, relative displacement due to coherency loss and site effect which can cause the unseating and pounding between girders are evaluated. As a result, considering the soil conditions of each site are always important and should not be neglected for an accurate structural response analysis.

Simple and Efficient Methods for the Response Estimation of Building Structure Subjected to Human Induced Loads (무리하중을 받는 구조물의 간편하고 효율적인 응답추정)

  • Kim, Tae-Ho;Lee, Dong-Guen;Min, Kyung-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.4 s.44
    • /
    • pp.19-28
    • /
    • 2005
  • Long span structures with low natural frequencies such as shopping malls, large offices, and assembly rooms may experience signification dynamic responses due to human activities. In many cases, the group activities are common thing in comparison with the single activity. The purpose of this study is to evaluate the responses of building structure subjected to group human loads using mode shapes. For this purpose, equations to estimate the magnitudes ol responses ol structure subjected to group walking loads are derived. And the correlation of loads is verified for identifying the relation of each human load composing of group human loads using two load cells. The method is proposed for evaluating the responses of structure subjected to group loads using mode shapes and correlation function related to each human loads. The effectiveness ol the proposed method is verified analytically using a simple beam and floor and experimentally on a footbridge measuring the structural response induced by group pedestrians for the case of synchronization or not. Results indicate that the amplitudes of group walking loads can be easily estimated if the mode shapes are available, and that the corresponding structural responses can be estimated easily by the simple response measurement using the proposed method.

Plastic Hinge Length of Reinforced Concrete Columns with Low Height-to-Width Ratio (전단경간비가 작은 철근콘크리트 기둥의 소성힌지 길이)

  • Park, Jong-Wook;Woo, Jae-Hyun;Kim, Byung-Il;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.675-684
    • /
    • 2010
  • The reinforced concrete members are designed to fail in flexural to lead ductile fracture. In the building structures, the failure is typically imposed on beams to prevent damages in columns. However, progression of plastic collapse mechanism may ultimately develop, a plastic hinge at the bottem end of the first floor column, which then can be subjected to shear or bond finally due to large axial force and small shear span-to-depth ratio. In this study, 10 RC column specimens failed in shear after flexural yielding was investigated to determine the factors affecting the plastic hinge length. The findings of this study showed that the most effective factor affecting the plastic hinge length was an axial force. As an axial force increase, an axial strain and a ductility ratio were decreased obviously. The test also shows the observed plastic hinge length was about 0.8~1.2d and the this result has difference compared with forward research.

Localized reliability analysis on a large-span rigid frame bridge based on monitored strains from the long-term SHM system

  • Liu, Zejia;Li, Yinghua;Tang, Liqun;Liu, Yiping;Jiang, Zhenyu;Fang, Daining
    • Smart Structures and Systems
    • /
    • v.14 no.2
    • /
    • pp.209-224
    • /
    • 2014
  • With more and more built long-term structural health monitoring (SHM) systems, it has been considered to apply monitored data to learn the reliability of bridges. In this paper, based on a long-term SHM system, especially in which the sensors were embedded from the beginning of the construction of the bridge, a method to calculate the localized reliability around an embedded sensor is recommended and implemented. In the reliability analysis, the probability distribution of loading can be the statistics of stress transferred from the monitored strain which covered the effects of both the live and dead loads directly, and it means that the mean value and deviation of loads are fully derived from the monitored data. The probability distribution of resistance may be the statistics of strength of the material of the bridge accordingly. With five years' monitored strains, the localized reliabilities around the monitoring sensors of a bridge were computed by the method. Further, the monitored stresses are classified into two time segments in one year period to count the loading probability distribution according to the local climate conditions, which helps us to learn the reliability in different time segments and their evolvement trends. The results show that reliabilities and their evolvement trends in different parts of the bridge are different though they are all reliable yet. The method recommended in this paper is feasible to learn the localized reliabilities revealed from monitored data of a long-term SHM system of bridges, which would help bridge engineers and managers to decide a bridge inspection or maintenance strategy.

Analysis on the Rigid Connections of the Drilled Shaft with the Cap for Multiple Pile Foundations (현장타설말뚝을 적용한 다주식 기초에서 말뚝과 캡의 강결합에 대한 분석)

  • Cho, Sung-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.7
    • /
    • pp.61-73
    • /
    • 2008
  • Piles of a bridge pier are connected with the column through the pile cap (footing). Behavior of the pile foundation can be different according to the connection method between piles and the pile cap. Connection methods between pile heads and the pile cap are divided into two groups : rigid connections and hinge connections. Domestic design code has been specified to use rigid connection method for the highway bridge. In the rigid connection method, maximum bending moment of a pile occurs at the pile head and this helps the pile to prevent the excessive displacement. Rigid methods are also good to improve the seismic performance. However, some specifications prescribe that conservative results through investigations of both the fixed-head condition and the free-head condition should be reflected in the design. This statement may induce an over-estimated design for the bridge which has high-quality structures with casing covered drilled shafts and the PC-house contained pile cap. Because the assumption of free-head conditions (hinge connections) is unreal for the elevated pile cap system with multiple piles of the long span sea-crossing bridges. On the other hand, elastic displacement method to evaluate the pile reactions under the pile cap is not suitable for this type of bridges due to impractical assumptions. So, full modeling techniques which analyze the superstructure and the substructure simultaneously should be performed. Loads and stress state of the large diameter drilled shaft and the pile cap for Incheon Bridge which will be the longest bridge of Korea were investigated through the full modeling for rigid connection conditions.

A Study on the Prediction of Ultimate Stress of Tendon in Unbonded Prestressed Concrete Beams without Slip (비부착 PSC 보에서 슬립이 없는 강선의 극한 응력 예측에 관한 연구)

  • Hong, Sung-Su;Yoo, Sung-Won;Park, Seung-Bum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.537-548
    • /
    • 2008
  • Recently, the prestressed unbonded concrete structures are increasingly being built. The mechanical behavior of prestressed concrete beams with unbonded tendon is different from that of normal bonded PSC beams in that the increment of tendon stress was derived by whole member behavior. The purpose of the present paper is therefore to evaluate the flexural behavior and to propose the equation of ultimate tendon stress by performing static flexural test according to span/depth, concrete compression strength, reinforcement ratio and the effect of existing bonded tendon. From experimental results, for cracking, yielding and ultimate load, the effect of reinforcement ratio was more effective than concrete compression strength, and the beams having high strength concrete had a good performance than having low concrete, but there was no difference between high strength and low strength. And as L/dp was larger, test beams had a long region of ductility. This means that unbonded tendon has a large contribution after reinforcement yielding. Especially, the equation of ACI-318 was not match with test results and had no correlations. After analysis of test results, the equation of ultimate unbonded tendon stress without slip was proposed, and the proposed equation was well matched with test results. So the proposed equation in this paper will be a effective basis for the evaluation of unbonded tendons without slip, analysis and design.

Analysis of Structural Types and Design Factors for Fruit Tree Greenhouses (과수재배용 온실의 구조유형과 설계요소 분석)

  • Nam, Sang-Woon;Ko, Gi-Hyuk
    • Journal of Bio-Environment Control
    • /
    • v.22 no.1
    • /
    • pp.27-33
    • /
    • 2013
  • In order to provide basic data for the development of a controlled environment cultivation system and standardization of the structures, structural status and improvement methods were investigated for the fruit tree greenhouses of grape, pear, and peach. The greenhouses for citrus and grape cultivation are increasing while pear and persimmon greenhouses are gradually decreasing due to the advance of storage facilities. In the future, greenhouse cultivation will expand for the fruit trees which are more effective in cultivation under rain shelter and are low in storage capability. Fruit tree greenhouses were mostly complying with standards of farm supply type models except for a pear greenhouse and a large single-span peach greenhouse. It showed that there was no greenhouse specialized in each species of fruit tree. Frame members of the fruit tree greenhouses were mostly complying with standards of the farm supply type model or the disaster tolerance type model published by MIFAFF and RDA. In most cases, the concrete foundations were used. The pear greenhouse built with the column of larger cross section than the disaster tolerance type. The pear greenhouse had also a special type of foundation with the steel plate welded at the bottom of columns and buried in the ground. As the results of the structural safety analysis of the fruit tree greenhouses, the grape greenhouses in Gimcheon and Cheonan and the peach greenhouses in Namwon and Cheonan appeared to be vulnerable for snow load whereas the peach greenhouse in Namwon was not safe enough to withstand wind load. The peach greenhouse converted from a vegetable growing facility turned out to be unsafe for both snow and wind loads. Considering the shape, height and planting space of fruit tree, the appropriate size of greenhouses was suggested that the grape greenhouse be 7.0~8.0 m wide and 2.5~2.8 m high for eaves, while 6.0~7.0 m wide and 3.0~3.3 m of eaves height for the pear and peach greenhouses.