• Title/Summary/Keyword: large-span structures

Search Result 267, Processing Time 0.02 seconds

The Case Study on the Erection Method of Large Span Structures (대공간 건축물 Erection 공법에 관한 사례 조사 연구)

  • Jung, Hwan-Mok;Lee, Seong-Yeun;Jee, Suck-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.2 s.24
    • /
    • pp.97-104
    • /
    • 2007
  • Recently, the demand of the large span structures has been increasing. The large span structures include such a large scaled structures such as: the shell structure, the space frame structure, the membrane structure and the cable structure, etc. The large span structures are supposed to be confirmed and issued carefully at the initial process of the design besides the construction engineering aspects because of the structural specific cause that should solve and accomodate those large and wide space without columns. In the field of the large span structure construction, the erection construction method has been regarded as a major affected aspects on the construction cost, construction term, and stability. In the field of the large span structure construction, there are various construction method and system could be applied depends on the condition of the construction site and other circumstances such a major construction method as: the element method, the block method, the sliding method, the lift-up method and complexed method, etc. In this study, as the case study of the erection construction method of the large span structures, after survey and study that those existing large span structures construction cases which had applied and adopted the election construction method and analysis and classify into the Uoups by the size, span, ceiling height, structural system in odor to supply and suggest the data for the enhancement and development in the field of the erection construction method as a efficient structural solution of the large span structure construction.

  • PDF

Multiple characteristic response damage analysis of large-span space structures based on equivalent damping ratio

  • Wei, Jun;Yang, Qingshun;Zhou, Lexiang;Chen, Fei
    • Earthquakes and Structures
    • /
    • v.23 no.4
    • /
    • pp.339-352
    • /
    • 2022
  • Due to the large volume and generally as a public building, the damage of large-span space structures under various non-conventional loads will cause greater economic losses, casualties, and social impacts, etc. Therefore, it is particularly important to evaluate the seismic performance of large-span space structures. This paper taked a multipurpose sports center as an example and considered its synergistic deformation based on the method of equivalent damping ratio. Furthermore, The ABAQUS software was used to analyze the time-history and energy response of the multipurpose sports center under the action of rare earthquakes, and proposed a quantitative damage index to assess the overall damage of the structure. Finally, the research results indicated that the maximum inter-story drift ratio of the multipurpose sports center under the action of rare earthquakes was less than its limit value. The frame beams presented different degrees of damage, but the key members were basically in an elastic state. The bearing capacity did not reach the limit value, which satisfied the intended seismic performance target. This study taked an actual case as an example and proposed a relevant damage evaluation system, which provided some reference for the analysis of the seismic performance of large-span space structures.

Watertightness Property Evaluation of Rain-Block System (개폐식 대공간 구조물에서 지붕 맞댐부 우수차단 시스템의 수밀성 평가에 관한 연구)

  • Kim, Yun-Ho;Baek, Ki-Youl;Kim, Jong-Su;Lee, Sun-Gyu;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.13-16
    • /
    • 2010
  • This study is an Investigation on the Watertightness Properties of Rain-Block System on the Sliding-Roof Joint of Large-Span Membrane Structures. In this experimental, we test the watertightness performance of joint part of sliding door in roof of large span membrane structure(for pilot project) under environment of rain and wind. A shape of rain water blocking systems of joint part in sliding door verifies the defects and effects of water leakage prevention in precipitation with the wind conditions. For obtaining watertightness of large span membrane structures, it is necessary quality of joints and performance, and quality of membrane material of a retractable roof as well as a closed roof. Also, for obtaining quality in joints, it is essential to make a watertightness guideline for design of large-span membrane.

  • PDF

Optimization of multiple tuned mass dampers for large-span roof structures subjected to wind loads

  • Zhou, Xuanyi;Lin, Yongjian;Gu, Ming
    • Wind and Structures
    • /
    • v.20 no.3
    • /
    • pp.363-388
    • /
    • 2015
  • For controlling the vibration of specific building structure with large span, a practical method for the design of MTMD was developed according to the characteristics of structures subjected to wind loads. Based on the model of analyzing wind-induced response of large-span structure with MTMD, the optimization method of multiple tuned mass dampers for large-span roof structures subjected to wind loads was established, in which the applicable requirements for strength and fatigue life of TMD spring were considered. According to the method, the controlled modes and placements of TMDs in MTMD were determined through the quantitative analysis on modal contribution to the wind-induced dynamic response of structure. To explore the characteristics of MTMD, the parametric analysis on the effects of mass ratio, damping ratio, central tuning frequency ratio and frequency range of MTMD, was performed in the study. Then the parameters of MTMD were optimized through genetic algorithm and the optimized MTMD showed good dynamic characteristics. The robustness of the optimized MTMD was also investigated.

Nonlinear dynamic analysis for large-span single-layer reticulated shells subjected to wind loading

  • Li, Yuan-Qi;Tamura, Yukio
    • Wind and Structures
    • /
    • v.8 no.1
    • /
    • pp.35-48
    • /
    • 2005
  • Wind loading is very important in structural design of large-span single-layer reticulated shell structures. In this paper, a geometrically nonlinear wind-induced vibration analysis strategy for large-span single-layer reticulated shell structures based on the nonlinear finite element method is introduced. According to this strategy, a computation program has been developed. With the information of the wind pressure distribution measured simultaneously in the wind tunnel, nonlinear dynamic analysis, including dynamic instability analysis, for the wind-induced vibration of a single-layer reticulated shell is conducted as an example to investigate the efficiency of the strategy. Finally, suggestions are given for dynamic wind-resistant analysis of single-layer reticulated shells.

Seismic Response on Thin Shell as Structural Foundation (기초구조물로서 얇은 쉘 구조물의 지진응답)

  • Yee Hooi Min;Azizah Abdul Nassir;Kim Jae Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.2
    • /
    • pp.31-41
    • /
    • 2024
  • This study aims to investigate the seismic response of a large span thin shell structures and assess their displacement under seismic loads. The study employs finite element analysis to model a thin shell structure subjected to seismic excitation. The analysis includes eigenvalue analysis and time history analysis to evaluate the natural frequencies and displacement response of the structure under seismic loads. The findings show that the seismic response of the large span thin shell structure is highly dependent on the frequency content of the seismic excitation. The eigenvalue analysis reveals that the tenth mode of vibration of the structure corresponds to a large-span mode. The time history analysis further demonstrates, with 5% damping, that the displacement response of the structure at the critical node number 4920 increases with increasing seismic intensity, reaching a maximum displacement of 49.87mm at 3.615 seconds. Nevertheless, the maximum displacement is well below the allowable limit of the thin shell. The results of this study provide insight into the behaviour of complex large span thin shell structures as elevated foundations for buildings under seismic excitation, based on the displacement contours on different modes of eigenvalues. The findings suggest that the displacement response of the structure is significant for this new application of thin shell, and it is recommended to enhance the critical displacement area in the next design phase to align with the findings of this study to resist the seismic impact.

A Study on the Construction Status and the Structural System Features of Wooden Large Space Buildings (대공간 목구조 건축의 건립 현황과 구조시스템 특성 분석)

  • Lee, Juna;Lee, Hyunghoon;Lee, Seong-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.3
    • /
    • pp.15-24
    • /
    • 2022
  • In this research, the case of modern wooden structures since 1950 with span of 30m or more was investigated and analyzed the construction status and structural planning characteristics of wooden large space architecture. As a result, wooden large space buildings have built around Asia, North America, and Europe, in which cases of ice skating stadiums with span of 30m to 60m were concentrated. In the case of baseball parks and football stadiums, even a span of about 165m was built in a wooden structure. In addition, it was found that the structural systems used in wooden large space structures were a funicular arch and truss structure, in that cases, funicular arch system consisting of radial arrangements was used in the examples exceeded 150m and the two way truss system was also used in long span wooden structures exceeding 100m. As the truss structure with a tie-rod or the flexure+tension structure was partially investigated, it can be seen that various timber structural systems need to be devised and researched. Also, It was investigated that a technique in which some members of the truss are made of steel or a composite member of steel and timber is also possible to develop

A Study on the Evaluation of Watertightness Properties for Rain-Block System in the Sliding-Roof Joint of Large-Span Membrane Structures (개폐식 대공간 막 구조물에서 지붕 맞댐부 우수차단 시스템의 수밀성 평가에 관한 연구)

  • Oh, Sang-Keun;Baek, Ki-Youl;Lee, Sun-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.3
    • /
    • pp.129-136
    • /
    • 2010
  • This study is an evaluation of the water-tightness properties of rain-block systems in the sliding-roof joint of large-span membrane structures. In this study, we suggested a method of evaluating the water-tightness performance of the joint part of a sliding door in the roof of a large-span membrane structure (for a pilot project), in an environment of rain and wind. The shape of the rainwater blocking systems of the joint part in a sliding door verifies the defects and the effects of water leakage prevention when there is precipitation with wind conditions. To secure the water-tightness of large span membrane structures, it is necessary to have a guideline on the evaluation of the design for rain-block system of the joint part, and the quality of the membrane material, both of a retractable roof and a closed roof.

A Fundamental Study of Performance Based Seismic Design on the Large Span Structures: The Characteristics of Elasto-Plastic Earthquake Responses of a Steel Frame with Membrane Roof (공간구조물의 성능기초 내진설계에 관한 기초연구: 강구조 골조막 구조의 탄소성 지진응답특성)

  • Nakazawa, Shoji;Cheong, Myung-Chae;Kato, Shi;Yoshino, Tatsuya;Oda, Kenshi
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.2 s.24
    • /
    • pp.35-44
    • /
    • 2007
  • The characteristics of elasto-plastic responses of a gymnasium building which is a steel braced frame with membrane roof is discussed as a basic research on the performance based seismic design of large span structures, in this paper. Under the strong earthquake motions, the formation of plastic hinges on braces attached by the bottom frame make reduce down the stresses and displacements of upper structures, and vertical acceleration of the membrane is tend to increase but maximum response of strain and corresponding stresses are tend to be reduced.

  • PDF

Experimental and Computational Investigation of Wind Flow Field on a Span Roof Structure

  • K B Rajasekarababu;G Vinayagamurthy;Ajay Kumar T M;Selvirajan S
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.287-300
    • /
    • 2022
  • Unconventional structures are getting more popular in recent days. Large-span roofs are used for many structures, such as airports, stadiums, and conventional halls. Identifying the pressure distribution and wind load acting on those structures is essential. This paper offers a collaborative study of computational fluid dynamics (CFD) simulations and wind tunnel tests for assessing wind pressure distribution for a building with a combined slender curved roof. The hybrid turbulence model, Improved Delayed Detached Eddy Simulation (IDDES), simulates the open terrain turbulent flow field. The wind-induced local pressure coefficients on complex roof structures and the turbulent flow field around the structure were thus calculated based upon open terrain wind flow simulated with the FLUENT software. Local pressure measurements were investigated in a boundary layer wind tunnel simultaneous to the simulation to determine the pressure coefficient distributions. The results predicted by CFD were found to be consistent with the wind tunnel test results. The comparative study validated that the recommended IDDES model and the vortex method associated with CFD simulation are suitable tools for structural engineers to evaluate wind effects on long-span complex roofs and plan irregular buildings during the design stage.