• Title/Summary/Keyword: large-scale oedometer tests

Search Result 2, Processing Time 0.023 seconds

Evaluation of Compressibility of Rock Fill Materials by Large-Scale Oedometer Tests (대형 오이도미터 시험을 통한 Rockfill 재료의 압축성 평가)

  • Kim, Bum-Joo;Shin, Dong-Hoon;Jeon, Je-Sung;Lim, Jeong-Yeul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.627-632
    • /
    • 2005
  • In this study, a series of large-scale oedometer tests was performed to investigate the compressibility of rock fill materials. The testing samples were prepared to have three different grain size distributions and for each distribution, exist in two different states(dried and saturated). The test results indicated that particle breakages occurred mainly for the particles larger than 4.75mm in size and increased with increasing grain sizes. Also, it was found that, for a dry sample as it became well-graged, its compressibility decreased and accordingly, its tangent constrained modulus increased. A comparion between the samples in dry and saturated states revealed that compressibility of the materials increases with increasing water content. The values of tangent constrained modulus calculated for the tested dry samples were larger by about 10 to 20%, on average, than those for the saturated samples.

  • PDF

The Study on permeability enhancement in smear zone using electro-osmotic pressure (전기 삼투압을 이용한 교란영역의 투수성 개선에 관한 연구)

  • Ahn, Byung-Wook;Noh, Hee-Jeon;Kim, Hyun-Ki;Cho, Nam-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.435-441
    • /
    • 2008
  • More time is required for consolidating soft clay when its hydraulic conductivity around the vertical drains is reduced by soil disturbance. One of the methods to be proposed to solve such problem is the electro-osmotic flow application. This study presents the experimental results of model tests using a modified oedometer and a large-scale cylinder with a sand drain. Results show that the development of negative excessive pore water pressure due to the DC electrical field in saturated clay can be transformed to additional loads causing more consolidation settlement.

  • PDF