• Title/Summary/Keyword: large triaxial test

Search Result 92, Processing Time 0.025 seconds

Evaluation of Dynamic Properties of Trackbed Foundation Soil Using Mid-size Resonant Column Test

  • Lim, Yujin;Nguyen, Tien Hue;Lee, Seong Hyeok;Lee, Jin-Wook
    • International Journal of Railway
    • /
    • v.6 no.3
    • /
    • pp.112-119
    • /
    • 2013
  • A mid-size RC test apparatus (MRCA) equipped with a program is developed that can test samples up to D=10 cm diameter and H=20 cm height which are larger than usual samples used in practice. Using the developed RC test apparatus, two types of crushed trackbed foundation materials were tested in order to get the shear modulus reduction curves of the materials with changing of shear strain levels. For comparison purpose, large repetitive triaxial compression tests (LRT) with samples of height H=60cm and diameter D=30 cm were performed also. Resilient modulus obtained from the LRT was converted to shear modulus by considering elastic theory and strain level conversion and were compared to shear modulus values from the MRCA. It is found from this study that the MRCA can be used to test the trackbed foundation materials properly. It is found also that strain levels of $E_{v2}$ mostly used in the field should be verified considering the shear modulus reduction curves and proper values of $E_{v2}$ of trackbed foundation must be used considering the strain level verified.

Evaluation of Strength and Deformability of a Friction Material Based on True Triaxial Compression Tests (진삼축압축시험을 통한 마찰재료의 강도 및 변형 특성 평가)

  • Bae, Junbong;Um, Jeong-Gi;Jeong, Hoyoung
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.597-610
    • /
    • 2022
  • Knowledge of the failure behavior of friction materials considering their intermediate principal stress is related to an understanding of situations where these materials might be used: for example, the stability of deep-seated boreholes and fault slip analysis. This study designed equipment for physically implementing true triaxial compression and used it to assess specimens of plaster, a friction material. The material's mechanical behaviors are discussed based on the results. The applicability of the 3D failure criteria are also reviewed. The tested specimens were molded cuboids of width, length, and height 52, 52, and 104 mm, respectively. A total of 24 true triaxial compression tests were performed under various combinations of 𝜎3 and 𝜎2 conditions. Conventional uniaxial and triaxial compression tests were employed to estimate the mechanical properties of the plaster for use as parameters for 3D failure criteria. Examining the stress-strain relations of the plaster materials showed that a large difference between the intermediate principal stress and the minimum principal stress indicated strong brittle behavior. The mechanical behavior of the plaster used here reflects the change of intermediate principal stress. Nonlinear multiple regression analysis on the test data in the principal space showed that the modified Wiebols-Cook failure criterion and the modified Lade failure criterion were the most suitable 3D failure criteria for the tested plaster.

Development of Permanent Deformation Prediction Model for Trackbed Foundation Materials based on Shear Strength Parameters (강화노반 쇄석재료의 전단강도특성을 고려한 영구변형예측모델 개발)

  • Lim, Yujin;Hwang, Jungkyu;Cho, Hojin
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.623-630
    • /
    • 2012
  • Formation used as trackbed foundation for providing vertical bearing capacity onto rail foundation are composed of crushed stones usually with certain type of grain size distribution. Permanent deformation in trackbed foundation can be generated by increasing number of load repetition due to train traffic increases, causing track irregularity. In this study, a specially prepared trackbed foundation materials (M-40) used in Korea has been tested using a large repetitive triaxial compression apparatus in order to understand resilient and permanent deformation characteristics of the material. From these test results, resilient and permanent deformation characteristic are analyzed so that a permanent deformation model is developed which can consider number of load repetition N, confining stress (${\sigma}_3$), shear stress ratio(${\tau}/{\tau}_f$) and stiffness of the material.

Factors affecting particle breakage of calcareous soil retrieved from South China Sea

  • Wang, Xinzhi;Shan, Huagang;Wu, Yang;Meng, Qingshan;Zhu, Changqi
    • Geomechanics and Engineering
    • /
    • v.22 no.2
    • /
    • pp.173-185
    • /
    • 2020
  • Calcareous soil is originated from marine biogenic sediments and weathering of carbonate rocks. The formation history for calcareous sediment includes complex physical, biological and chemical processes. It is preferably selected as the major fill materials for hydraulic reclamation and artificial island construction. Calcareous sands possess inter pores and complex shape are liable to be damaged at normal working stress level due to its fragile nature. Thus, the engineering properties of calcareous soil are greatly affected by its high compressibility and crushability. A series of triaxial shear tests were performed on calcareous sands derived from South China Sea under different test conditions. The effects of confining pressure, particle size, grading, compactness, drainage condition, and water content on the total amount of particle breakage for calcareous soil were symmetrically investigated. The test results showed that the crushing extent of calcareous sand with full gradation was smaller than that a single particle group under the same test condition. Large grains are cushioned by surrounding small particles and such micro-structure reduces the probability of breakage for well-graded sands. The increasing tendency of particle crushing for calcareous sand with a rise in confining pressure and compactness is confirmed. It is also evident that a rise in water content enhances the amount of particle breakage for calcareous sand. However, varying tendency of particle breakage with grain size is still controversial and requires further examination.

A Study of MD Constitutive Model Calibration for Coarse-grained Soils (조립재료에 대한 MD 구성모델 캘리브레이션 연구)

  • Choi, Changho;Shin, Dong-Hoon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.1
    • /
    • pp.63-72
    • /
    • 2013
  • The structural stability of fill dam largely depends on the engineering behavior of rock materials used as main zone for dam construction and it is necessary to understand well the stress-strain characteristics of fill materials as well as shear strength property. In addition, the numerical analysis of fill dam requires a thorough study for calibrating material properties and parameters of a coarse-grained soil constitutive model. In this paper, large triaxial test results for Buhang-dam fill materials are analyzed and constitutive model parameters are calibrated based on the test results. It is shown that MD constitutive model is capable to predict the stress-strain behavior of dense and loose coarse-grained soils used for Buhang-dam construction based on the comparison study between the experimental test result and numerical simulation.

Analysis of Concrete Specimen Using Plasticity Theory (소성 이론을 이용한 콘크리트 공시체의 거동 해석)

  • Park, Jae-Gyun;Chung, Chul-Hun;Kang, Un-Suk;Hyun, Chang-Heon
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.2 s.74
    • /
    • pp.89-97
    • /
    • 2006
  • Recently, experimental and theoretical studies about nonlinear behavior of large concrete structures are in progress. The purpose of this study is to describe the nonlinear behavior of a concrete specimen under compression using several plastic models and to choose the best plastic model for later use in numerical analyses of concrete structures. ABAQUS is a general-purpose FEM program and we tested all suitable embedded material models for concrete. To verify the effectiveness of nonlinear analyses, results were compared with uniaxial and triaxial compression test results.

Microscopic Analysis of Prefinitely Strained Cement Paste

  • Song, Ha-Won;Kim, Jang-Ho;Choi, Jae-Hyeok;Byun, Keun-Joo
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.127-140
    • /
    • 1999
  • In this paper, a microscopic analysis of prefinitelv strained cement paste specimen was carried out. The microscopic behavior of concrete under triaxial stress must be fully understood in order to explain the additional ductilitv that comes from lateral confinement and to get microstructural information in large deformed and large strained concrete. The so-called "tube-squash" test was applied to achieve enormously high shear and deviatoric strain of concrete under extremly high pressure without fracture. Then, microscopic analyses by focusing on hydration and microstructure of Prefinitely strained cement paste were carried out on cored-out deformed and virgin (undeformed) cement paste specimens : the first specimen being 40 days old, the second one being one year old. The microscopic analysis bv Field Emission Scanning Electronic Microscope (FESEM) was carried out for comparison between the specimens after 40 days and those arter one year. For one year old specimens, X-Ray Diffractometer (XRD) analysis, Energy Dispersive x-rav Spectrometer (EDS) analysis, and Differential Thermal Analysis/Thermo-Gravitv (DTA/TG) analysis were also carried out to study the hydration and the microstructures of prefinitely strained cement paste specimen by focusing on the methodologies of their microscopic analyses. analyses.

  • PDF

Dynamic shear modulus and damping ratio of saturated soft clay under the seismic loading

  • Zhen-Dong Cui;Long-Ji Zhang;Zhi-Xiang Zhan
    • Geomechanics and Engineering
    • /
    • v.32 no.4
    • /
    • pp.411-426
    • /
    • 2023
  • Soft clay is widely distributed in the southeast coastal areas of China. Many large underground structures, such as subway stations and underground pipe corridors, are shallow buried in the soft clay foundation, so the dynamic characteristics of the soft clay must be considered to the seismic design of underground structures. In this paper, the dynamic characteristics of saturated soft clay in Shanghai under the bidirectional excitation for earthquake loading are studied by dynamic triaxial tests, comparing the backbone curve and hysteretic curve of the saturated soft clay under different confining pressures with those under different vibration frequencies. Considering the coupling effects of the confining pressure and the vibration frequency, a fitting model of the maximum dynamic shear modulus was proposed by the multiple linear regression method. The M-D model was used to fit the variations of the dynamic shear modulus ratio with the shear strain. Based on the Chen model and the Park model, the effects of the consolidation confining pressure and the vibration frequency on the damping ratio were studied. The results can provide a reference to the earthquake prevention and disaster reduction in soft clay area.

Undrained Creep Characteristics of Silty Sands and Comparative Study of Creep model (실트질 모래의 비배수 크리프특성 및 크리프 모델 비교연구)

  • Bong, Tae-Ho;Son, Young-Hwan;Noh, Soo-Kack;Park, Jae-Sung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.1
    • /
    • pp.19-26
    • /
    • 2012
  • Soils exhibit creep behavior in which deformation and movement proceed under a state of constant stress or load. In this study, A series of triaxial tests were performed under constant principal stress in order to interpret the undrained creep characteristics of silty sands. Although samples are non-plastic silty sands, the results of tests show that the creep deformation increasing over time. Based on the results of test, Singh-Mitchell model parameters and Generalized model coefficients were calculated. Generalized model showed slightly larger deformation in the primary creep range but secondary creep deformation was almost identical. Although Singh-Mitchell model showed relatively large errors compared to Generalized model because it uses the average of test results, but Singh-Mitchell model can be easily represented by three creep parameters.

Physcial and Mechanical Characteristics of Soft Clay in Nam-Ak New City (남악신도시 연약점토의 물리적 특성 및 역학적 특성 연구)

  • 김종렬;배성웅;이치열
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.271-278
    • /
    • 2002
  • Soft ground has complex features in mechanic character of ground. Some problems about the settlement and transformation occur if the ground strength is comparatively weak and the depth is large. Therefore, we should consider physical and mechanical characters for safe, economical design and management. As the result of the course, we can compare them with those of field then solve the limitations which were came from the complex character of the soft ground. I have considered the soil's physical character (specific gravity of soil particles, moisture content, grain-size analysis etc) and mechanical character (direct shear test, consolidation, triaxial shear test etc), and then make out a linear interpolation by regression using the two, those and connection of the depth

  • PDF