• 제목/요약/키워드: large spatial roof construction

검색결과 16건 처리시간 0.022초

대공간 지붕 철골공사의 시공계획 중점관리항목 도출 (Deriving of Critical Factors for Construction Planning in Large Span Roof Construction)

  • 이명도
    • 한국공간구조학회논문집
    • /
    • 제18권1호
    • /
    • pp.67-75
    • /
    • 2018
  • Steel roof construction is on the most important and critical factors in the large spatial construction and necessary to be prepared under a radical planning. Therefore, the major management factors of steel roofing structure assembly must be critically reviewed during planning. Through the review process, it is necessary to reduce the construction cost, to prevent delays in the construction schedule, and to minimize construction errors. However, domestically due to the lack experience in large spatial constructions, a planning of roof construction is limited to have a radical planning. Especially due to unclear organization of the management factors in hierarchy, using them in reality for construction planning is difficult and reliability is low. Therefore, in this study, the goal is to conduct the major management factors in the large spatial construction. To achieve this, we have reviewed and analyzed the numbers of construction plans and construction reports and conducted a total 68 of the management factors. Based on the conducted factors, we have interviewed 16 experts with experience in large spatial construction. From the interview result, we have deduced the factors scored above 4.20 of 10 for critical factors. The results of this study will be used as a guidance for planning steel roofing structure assembly in large spatial construction. The critical factors will be provided to the site mangers for the quality management of large spatial constructions in practice.

대공간 지붕공사 시공지침서 개발을 위한 중점관리항목 도출 (Principal Items of Construction Management for Developing Construction Guide of Large Spatial Roof Construction)

  • 차민수;이명도
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 추계 학술논문 발표대회
    • /
    • pp.197-198
    • /
    • 2017
  • Large spatial construction needs to consider various construction management factors through the construction guide, including high-tech roofing works for creating large space without columns and erecting large spatial structure. However, the domestic large spatial construction relies on overseas construction technologies due to the lack of construction guide of large spatial construction and experience in similar type of project. To improve the problem, we deduced principal items of construction management considering characteristics of large spatial construction as a preliminary study for developing a construction guide.

  • PDF

연성개폐 지붕구조물 Erection 시공법에 관한 사례 연구 (The Case Study on the Erection Construction Method for Soft Retractable Roof Structures)

  • 박금성;김형도;곽명근
    • 한국공간구조학회논문집
    • /
    • 제16권4호
    • /
    • pp.101-108
    • /
    • 2016
  • Lifting plan in the large spacial structure is an important factor influencing the efficiency and economy of the construction process. The purpose of this study was deriving the requirements for lifting techniques as the basic research in the double spoke wheel roof structure construction. In the lift up erection method, management plan of the interference error in the column and outer-ring was needed that occur during lifting roof structure. In the bent erection method, material usage reduction plan was required by the structural design of the temporary bent. In the hybrid erection method, lifting plan was needed that minimizes weather condition and crane usage. All lifting techniques were required Value Engineering model for reduction of cost and construction period.

쌍곡선포물선 대공간 구조물의 측벽개구율에 따른 지붕의 풍압특성 (Characteristic of Wind Pressure Distribution on the Roof of Hyperbolic Paraboloid Spatial Structures)

  • 유장열;유기표
    • 한국공간구조학회논문집
    • /
    • 제13권1호
    • /
    • pp.51-57
    • /
    • 2013
  • There can be diverse causes in the destruction of a large space structure by strong wind such as characteristics of construction materials and changes in internal and external wind pressure of the structure. To evaluate the wind pressure of roof against the large space structure, wind pressure experiment is performed. However, in this wind pressure experiment, peak internal pressure coefficient is set according to the opening of the roof in Korea wind code. In this article, it was tried to identify the change of internal pressure coefficient and the characteristics of wind pressure coefficient acting on the roof by two kinds of opening on the side of the structure with Hyperbolic Paraboloid Spatial Structures roof. When analyzing internal pressure coefficient according to roof shape, it was found that minimum (52%) and maximum (30%~80%) overestimation was made comparing to partial opening type proposed in the current wind load. It is judged that evaluation according to the opening rate of the structure should be made to evaluate the internal pressure coefficient according to load.

Large eddy simulation of wind loads on a long-span spatial lattice roof

  • Li, Chao;Li, Q.S.;Huang, S.H.;Fu, J.Y.;Xiao, Y.Q.
    • Wind and Structures
    • /
    • 제13권1호
    • /
    • pp.57-82
    • /
    • 2010
  • The 486m-long roof of Shenzhen Citizens Centre is one of the world's longest spatial lattice roof structures. A comprehensive numerical study of wind effects on the long-span structure is presented in this paper. The discretizing and synthesizing of random flow generation technique (DSRFG) recently proposed by two of the authors (Huang and Li 2008) was adopted to produce a spatially correlated turbulent inflow field for the simulation study. The distributions and characteristics of wind loads on the roof were numerically evaluated by Computational Fluid Dynamics (CFD) methods, in which Large Eddy Simulation (LES) and Reynolds Averaged Navier-Stokes Equations (RANS) Model were employed. The main objective of this study is to explore a useful approach for estimations of wind effects on complex curved roof by CFD techniques. In parallel with the numerical investigation, simultaneous pressure measurements on the entire roof were made in a boundary layer wind tunnel to determine mean, fluctuating and peak pressure coefficient distributions, and spectra, spatial correlation coefficients and probability characteristics of pressure fluctuations. Numerical results were then compared with these experimentally determined data for validating the numerical methods. The comparative study demonstrated that the LES integrated with the DSRFG technique could provide satisfactory prediction of wind effects on the long-span roof with complex shape, especially on separation zones along leading eaves where the worst negative wind-induced pressures commonly occur. The recommended LES and inflow turbulence generation technique as well as associated numerical treatments are useful for structural engineers to assess wind effects on a long-span roof at its design stage.

Field measurements of wind pressure on an open roof during Typhoons HaiKui and SuLi

  • Feng, Ruoqiang;Liu, Fengcheng;Cai, Qi;Yan, Guirong;Leng, Jiabing
    • Wind and Structures
    • /
    • 제26권1호
    • /
    • pp.11-24
    • /
    • 2018
  • Full-scale measurements of wind action on the open roof structure of the WuXi grand theater, which is composed of eight large-span free-form leaf-shaped space trusses with the largest span of 76.79 m, were conducted during the passage of Typhoons HaiKui and SuLi. The wind pressure field data were continuously and simultaneously monitored using a wind pressure monitoring system installed on the roof structure during the typhoons. A detailed analysis of the field data was performed to investigate the characteristics of the fluctuating wind pressure on the open roof, such as the wind pressure spectrum, spatial correlation coefficients, peak wind pressures and non-Gaussian wind pressure characteristics, under typhoon conditions. Three classical methods were used to calculate the peak factors of the wind pressure on the open roof, and the suggested design method and peak factors were given. The non-Gaussianity of the wind pressure was discussed in terms of the third and fourth statistical moments of the measured wind pressure, and the corresponding indication of the non-Gaussianity on the open roof was proposed. The result shows that there were large pulses in the time-histories of the measured wind pressure on Roof A2 in the field. The spatial correlation of the wind pressures on roof A2 between the upper surface and lower surface is very weak. When the skewness is larger than 0.3 and the kurtosis is larger than 3.7, the wind pressure time series on roof A2 can be taken as a non-Gaussian distribution, and the other series can be taken as a Gaussian distribution.

대공간 구조물의 공사비 분석 (Analysis on the Construction Cost of Spatial Structures)

  • 장명호;서삼열
    • 한국공간구조학회논문집
    • /
    • 제7권3호
    • /
    • pp.133-140
    • /
    • 2007
  • 대공간 구조물은 힘의 흐름을 자연스럽게 하고, 휨모멘트의 영향을 가능한 저감 시켜 면내력만으로 외부하중에 저항하는 역학 개념을 기초로, 구조 시스템의 효율성을 극대화시키는 형태저항형 구조이다. 구조물의 경제성 분석은 그 프로젝트의 실행을 결정할 수 있는 중요한 요소이다. 대공간 건설에는 일반 건물에 비해 많은 기술적 고려가 요구된다. 프로젝트의 성공적인 수행을 위해 타당성 검토 단계에서 구조물의 전 생애의 필수적인 요소에 대한 분석이 요구된다. 본 논문에서는 기존 대공간 구조물의 사례를 조사하며, 이를 통해 자료를 수집하고 공사비를 분석하였다. 본 연구는 대공간 구조의 데이터 베이스 구축을 위한 기본적인 데이터 제공을 목적으로 한다.

  • PDF

대공간 지붕철골공사 양중공법 선정을 위한 의사결정지원모델 (Decision Support Model for Selecting of Lifting Methods for Large Spatial Roof Construction)

  • 차민수;이명도
    • 한국건축시공학회지
    • /
    • 제18권5호
    • /
    • pp.489-498
    • /
    • 2018
  • 본 연구는 대공간 지붕철골공사의 양중공법 선정을 위한 의사결정지원모델 제안을 목적으로 한다. 이를 위해 이론적 고찰 및 전문가자문을 통해 6개의 상위요인과 19개의 하위요인으로 구성된 양중공법 선정 영향요인을 도출하였다. 이후 AHP분석을 통해 요인별 상대적 중요도를 산정한 결과, 6개의 상위요인 중 현장조건(0.237), 19개의 하위요인 중 여유공지의 유무(0.118)가 양중공법 선정에 있어 가장 중요한 영향요인으로 도출되었다. 이를 바탕으로 현장관리자가 공법대안을 평가할 수 있는 방법 및 절차를 수립하고 최종적으로 현장적합도지수를 제시해줌으로써 의사결정지원모델을 구축을 완료하였다. 구축모델의 검증을 위해 대공간 현장경험자를 대상으로 사례분석을 수행한 결과, 제시된 모델이 공법선정에 있어 유용하게 활용될 수 있을 것으로 판단되었다. 본 연구의 결과는 프로젝트 초기 공법선정 과정에서 현장관리자의 의사결정을 지원하는데 활용될 것으로 기대된다.

단층라멜라 돔의 시공 중 서포트 위치에 따른 좌굴특성 (The Buckling Characteristics of Single-Layer Lamella Domes according to Support Position under Construction)

  • 김철환;석창목;정환목
    • 한국공간구조학회논문집
    • /
    • 제10권4호
    • /
    • pp.67-74
    • /
    • 2010
  • 대공간 구조형식을 갖는 단층 래티스 돔은 역학성, 가능성, 심미성 등을 갖는 구조물로서 그 용도가 점점 확대되고 있다. 단층 래티스 돔의 골조 격자 패턴은 무수히 존재하며, 그 대표적인 패턴에는 삼각형, 사각형, 육각형, 라멜라형, 리브형 등이 있다. 대공간 구조물의 경우, 일반구조물과 달리 재래적인 공법으로 지붕 골조를 시공할 경우 많은 가설재가 소요됨으로 시공비 증가가 예상된다. 따라서 대공간 구조물의 지붕 골조 설치는 특수 Erection 공법에 의하는 것이 일반적이며, 그 중 지상에서 지붕골조를 설치 후 jack-up 서포트에 의해 골조를 인양하는 Step-Up 공법을 적용할 경우 공기와 공비의 대폭적인 절감이 예상된다. 따라서 본 논문의 목적은 Step-Up 공법에 의해 단층라멜라 돔의 지붕골조를 시공할 경우, 인양 중 가설 서포트 개수와 위치에 따른 좌굴특성을 검토하는 것이다. 연구 결과 서포트 개수 및 위치에 따른 단층라멜라 돔의 다양한 좌굴 특성에 관한 실무자를 위한 기초적인 자료를 얻을 수 있었다.

  • PDF

진동대실험을 통한 축소 아치구조물의 고유진동주기 분석 (Natural Vibration Period of Small-scaled Arch Structure by Shaking Table Test)

  • 김기철;강주원
    • 한국공간구조학회논문집
    • /
    • 제15권4호
    • /
    • pp.107-114
    • /
    • 2015
  • Large spatial structures can not easily predict the dynamic behavior due to the lack of construction and design practices. The spatial structures are generally analyzed through the numerical simulation and experimental test in order to investigate the seismic response of large spatial structures. In the case of analysis for seismic response of large spatial structure, the many studies by the numerical analysis was carried out, researches by the shaking table test are very rare. In this study, a shaking table test of a small-scale arch structure was conducted and the dynamic characteristics of arch structure are analyzed. And the dynamic characteristics of arch structures are investigated according to the various column cross-section and length. It is found that the natural vibration periods of the small-scaled arch structure that have large column stiffness are very similar to the natural vibration period of the non-column arch structure. And in case of arch structure with large column stiffness, primary natural frequency period by numerical analysis is very similar to the primary natural frequency period of by shaking table test. These are because the dynamic characteristics of the roof structure are affected by the column stiffness of the spatial structure.