• Title/Summary/Keyword: large space

Search Result 4,136, Processing Time 0.029 seconds

High Performance Hybrid Direct-Iterative Solution Method for Large Scale Structural Analysis Problems

  • Kim, Min-Ki;Kim, Seung-Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.79-86
    • /
    • 2008
  • High performance direct-iterative hybrid linear solver for large scale finite element problem is developed. Direct solution method is robust but difficult to parallelize, whereas iterative solution method is opposite for direct method. Therefore, combining two solution methods is desired to get both high performance parallel efficiency and numerical robustness for large scale structural analysis problems. Hybrid method mentioned in this paper is based on FETI-DP (Finite Element Tearing and Interconnecting-Dual Primal method) which has good parallel scalability and efficiency. It is suitable for fourth and second order finite element elliptic problems including structural analysis problems. We are using the hybrid concept of theses two solution method categories, combining the multifrontal solver into FETI-DP based iterative solver. Hybrid solver is implemented for our general structural analysis code, IPSAP.

Nonlinear Structural Analysis of High-Aspect-Ratio Structures using Large Deflection Beam Theory

  • Kim, Kyung-Seok;Yoo, Seung-Jae;Lee, In
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.41-47
    • /
    • 2008
  • The nonlinear structural analyses of high-aspect-ratio structures were performed. For the high-aspect-ratio structures, it is important to understand geometric nonlinearity due to large deflections. To consider geometric nonlinearity, finite element analyses based on the large deflection beam theory were introduced. Comparing experimental data and the present nonlinear analysis results, the current results were proved to be very accurate for the static and dynamic behaviors for both isotropic and anisotropic beams.

Optimal Control of Large Flexible Structures Via Partial Decoupling (부분 분리법에 의한 유연성이 있는 대형구조물의 최적제어)

  • Jeon, Gi-Joon
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.2
    • /
    • pp.189-196
    • /
    • 1986
  • Linear second-order matrix systems representing dynamics of large flexible structures are recast in a state space form. By can efficient partial decoupling technique, a few of low frequency modes are decoupled from the rest of modes, and an optimal control procedure is developed in such a way that damping is added to the selected modes without control spillover to uncontrolled modes. Since the partial decoupling requires only eigenvectors of the sected modes, the computing time can be reduced significantly in large systems. Therefore, the method of partial decoupling and control developed in this work may be applicable to vibration contorl of large flexible space structures.

  • PDF

A Study on Perfomance Based Evacuation Plan for a Large Indoor-Arena (대규모 실내경기장의 성능위주 방재계획에 관한 연구)

  • Choi, Yong-Seok;Kim, Hyung-Keun;Lee, Kyoo-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.10
    • /
    • pp.687-698
    • /
    • 2011
  • In this study, it was analyzed by a numerical analysis that plan/design considerations for ensuring the spectator safety of large arena audiences in a fire emergency evacuation plan. The latest issue, the 'performance-based design', fire and evacuation plan is important. But nowadays 'Specification-based design' is in common. In evacuation simulation, congestion of exit and aisle is ignored because only evacuation time of large-space is mainly analyzed. In smoke flow,'smoke filling effect' tends to be overrated. From now on, when design a field house, it is needed not 'smoke filling effect' and 'large-space evacuation' analysis, but analyzing 'whole building evacuation time' for ensuring fire evacuation safety of spectator.