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Optimal Control of Large Flexible Structures

Via Partial Decoupling
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Abstract

Linear second-order matrix systems representing dynamics of large flexible structures are
recast in a state space form. By an efficient partial decouplingtechnique,a few of low frequency
modes are decoupled from the rest of modes and an optimal control procedure is developed in
such a way that damping is added to the selected modes without control spillover to uncon-
trolled modes. Since the partial decoupling requires only eigenvectors of the sected modes,
the computing time can be reduced significantly in large systems. Therefore, the method of
partial decoupling and control developed in this work may be applicable to vibration control
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of large flexible space structures.

I. Introduction

With the advent of a space shuttle transpor-
tation system, there is considerable interest in
control of large flexible space structures
(LFSS).
One of control problems for LFSS is vibration
control which involves maintaining the shape

See References 1 and 2 for surveys.
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of critical structures of LFSS, such as a phased
array antenna or a solar energy collecting panel,
against possible disturbances after deployment.

LFSS may be described as a continuum
by a set of simultaneous partial differential
equations. Because of difficulties in imple-
mentation of distributed parameter control
systems, a usual approach to modeling is to
convert the partial differential equations into
an infinite number of ordinary differential
equations by spatial discretization®®’, A
finite number of modes are then retained in
the model. To maintain reasonable model
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fidelity, however, the order of the system
may be quite high (say n 2> 100), which
makes analysis and controller synthesis parti-
cularly challenging ¢!

Linear optimal control theory or pole
allocation method may be applied to the
approximated model to maintain the stability
of LFSS !s7, However, since linear optimal
control requires the solution of a matrix
Riccati equation of an order equal to twice
the number of modeled modes, the compu-
tational load for several hundred modes makes
ordinary type of coupled control impractical.
In addition, even though a small number of
critical modes are chosen to be controlled, the
state feedback control scheme is likely to
induce so-called control and observation spil-
lover'®!.  Spillover refers to the phenomenon
in which the energy intended to go into the
controlled modes is pumped into the uncon-
trolled modes. To reduce these difficulties
some papers concerned with the control of
LFSS adopt the independent modal-space
control'® method. The method is based on
the idea of coordinate transformations, where-
by the system is completely decoupled into

a set of independent second-order systems in
terms of the modal coordinates. This inde-
pendent modal-space control not only guar-
antees controllability but also guarantees that
no control spillover into the modeled modes
occurs, provided the number of actuators used
is equal to the order of the discretized
system ', But it has high hardware require-
ments,

The work in this paper will take a midway
direction between the independent modal-
space control and coupled control: Linear
optimal regulator scheme will be applied to
subsystems of partially decoupled modes, not
of completely decoupled modes. As a result,
the computational load for the solution of
the Riccati equation will be reasonable and
the control spillover problem will be eliminated
by decoupling the selected modes for control
from the other modes of the model. Serious-
ness of high hardware requirements can be
reduced owing to the work " for control-
lability and observability criteria of linear
second-order models.
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1. Problem Statement

Neglecting the low natural damping of LFSS
the dynamics of the structure after spatial
discretization of the partial differential equa-
tions are characterized by the linear second-
order matrix differential equation'*;

Mii (t) + Ku (t) = Byf (1), (1)

where the mass matrix MeR™® is symmetric
positive definite and the stiffness matrix
KeR™ s symmetric positive semi-definite.
The vector u(t)eR® describes the node dis-
placement and f(t)eR™ is the force vector
acting on the structure through the actuator
matrix Boean.

By changing coordinates u(t) to v(t) by v(t)=

M‘/zu(f) and pre-multiplying both sides of (1)
by M™”2 one obtains

Iv(t) + Kv(t) = Bof(t), 2)

where 1 is the (nxn) identity matrix, K=M'l/2
KM'%, and B0=M'V21§0. It is easy to show that
the change of coordinates preserves the system
eigen values as well as the symmetry of the
system,

The linear second-order system (2) is recast
in state space form as;

x () = Ax(t) + Bf(t), 3
where
v(tﬂ 0, I,
x(t)= , A= ,
v(t) KX 0n
0
and B = nxm (4)
Bg

It is well known!  that if <A,B >is
controllable then control f(t) of system equa-
tion (3), which minimizes a scalar cost func-
tional,

J (A0 =% f IxT ()Qx(t) + fT(OREE)] dt
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is written as
f(t) = —R"1BTPx(D), (6)

where 2nx2n matrix P satisfies the algebraic
Riccati equation,

o+ATp+pa_pPBRIBTP=0. N

The matrices QeRZ*% and ReR ™*™ ,re
weighting matrices chosen to fix the cost
penalty for displacements and control efforts,
respectively. It is assumed that Q is symmetric
positive semi-definite and R is symmetic posi-

tive definite. The control law (6) will give
the closed-loop system matrix,

A=A - BR!BTP (8)

Problems of dimensionality and spillover
to unwanted modes make this type of control
hardly acceptable for the control of LFSS.
Therefore, a simple control law which not
only minimizes a given cost function but adds
some damping to the selected modes will be
devised in the paper. The method will be
based on an efficient partial decoupling techni-
que to be presented next,

1. Partial Decoupling of the State Matrix

In this section the state matrix A defined
in (4) will be blockwise diagonalized in a
specific form so that the optimal control
strategy can be carried out on a lower-order
system of selected modes.

The eigenvalues of the state matrix A are
along the imaginary axis and occur in complex
conjugate pairs: If wz, i=1, ..., n are the eigen-

values of K then i‘jwii are the eigenvalues of A.

This suggests that the spectral decomposition
of A can be obtained from considering K rather
than A.

If interest is in assigning damping to a few of
low frequency modes, it is not necessary to
compute all of eigenvectors of K. Since most
of the energy of the system is in low frequency
modes, a reasonably controlled structure would
require control of the first few modes with the
exception of the rigid modes. Under these

circumstances the following theorem is useful
for the control of LFSS.

o = -1
Theorem., Let E Bdiag (Iq, "In-q)’ H=1,6Ed
and T = H + KE, where ®: C™ is an eigen-

vector matrix of KeR™™, Then T will diagon-
alize K blockwise into the form KB = Bdiag

(KBI’ KB2) under a similarity transformation;
Kg = TKT !, where KBlequq has eigenvalues
corresponding to the first q eigenvectors of K
and the rest of them belong to KB2'

Proof ' Let & be partitioned into four
blocks;
b1 912
¢ =
¢ In

where ¢,,6C%*9 and ¢22€B(H'Q)X(H'Q). Then
with E defined as before, T = H + BLE =
[PE + E®IP™! = By, ($11, —$22)"

1 Since
= ®DpP !, TKT ! = B giag ($11D1 011, P22
D,$55) provided that no eigenvalue A, is

common to both D; and D,. When we denote
= ¢ .D. ¢11’ i=1,2, the proof is completed.

The similarity transformation in Theorem
can be obtained from the knowledge of eigen-
vectors corresponding to those modes that are
to be decoupled. Let PD be the eigenpro-
jector’® of the q modes that are to be de-

coupled;

A3
g
I

Sl

q—)ll
- & 5T _
Pp = PByipe (I 0. )P =

o @=L
@ g 605 3udh

where it is assumed that ® is normalized such
that ! = ®T. The matrix H defined earlier
is then H = PD l/zI and thus T = PD + Bdlag
-1, ). Smce the matrix P contams
on?y the hrst q eigenvectors of K, [¢ ¢21 ]T,
T has been shown to be constructed from those
g eigenvectors.
Thus far, the spectral decomposition of K

has been carried out but the system matrix A

(191)
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must be considered because this is the matrix
of concern. Let T, be a new transformation
matrix with TA=Bdiag (T, T), where T is the
similarity transformation that diagonalizes K
blockwise into a symmetric matrix by Theorem
and eigenprojector mentioned above. Then,

a1 0n In

T AAT A" 9 )
—TKT 0n

This gives a new system matrix with KB in the

low left corner of the matrix, but the matrix
(9) is not blockwise diagonalized. To diagon-
alize (9) blockwise, construct a row-column
interchange matrix F,

- —
|
Iq'
""_[__—T_I_"T
F= I I q |
e
i S I
q
1_.___.._!.___;____
! In'q
- [ —J

where zeroes are deleted in F for simplicity.
The block diagonal form AB can then be found
by
= “lpla -1
AB FTAATA F'< SAS (10)
wl_1ere S & FTA and AB = Bdiag (ABI’ AB2)
with

%

kg1

“KBZ 0n-q

It can be seen from (10) that S is orthogonal
and that S is constructed from T only. There-
fore, all of the computations for the decom-
position (10) can be carried out by considering
K matrix which is nxn. As a result, it is not
necessary to find eigenvectors of A since the
necessary information is contained in K.

The spectral decomposition process will
modify the state equation (3) and the state
vector x(t) of (4) as follows: Let q(t) be a
new state vector defined as

(192)
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q(t) £ Sx(1), (11

then the state equation (3) becomes

q(t)=Agq(t) + Bf(1) (12)

where Ap = SAS! and B = SB.

IV. Optimal Control of Undamped
Decoupled Systems

It was shown in the previous section that
the state matrix could be diagonalized block-
wise with selected eigenvalues of At:‘RzmQrl
placed in one of the selected block matrices.
Let the block matrix for the undamped system

have the general form;

) Ag; O

Ap=SAS! (13)

Ap)

where ABlequxzq has eigenvalues |w;| < p

and ABzeR(2n-2q)x(2n—2q) has eigenvalues
Iwil > p with p a scalar variable and A is the
undamped system matrix. The, value of p
will be chosen to include desired modes in
ABl‘

Consider now the algebraic Riccati equation
for PeRZMX2M 404 et Ag be the decoupled
matrix, thus P must satisfy

Q+Ap P+PAR - perRIBTP=0 (19

where QeRZ™?M 4nd ReR™MXM e weighting

matrices for the state q(t) and the input f(t).
The matrix BeR2PX™ represents the control
input matrix where q(t) = Aga(t) + Bf(t) with
B = SB. If it is assumed that the algebraic
Riccati equation (14) is decoupled so that f’12=
0 and 1521 =0 then (14) can be written as follow-
ing set of matrix equations;

- Ts .3 s = o1 wTs
Qi+ APyt PyAgi— PiByR° BiPy =0

(15a)
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5+ AT .+ b 3R IETP,.
Qo+ AgyPyytPyrAg, — PyyByRB,; Pyy=0

(15b)
Q.+ B, B,R1BF,, =0

127 P B R "ByPy,y = (15¢)
Q,.+P,,B,R1BTP., =0 (15d)
21t P22BR 'B1P

where Qi' zlnd P.., ij=1,2 are partitioned
matric_es of Q and_% in usual way. Also, note
that B_=_[BT, BT]T with B eR2¥*™ and
1“325 R(2n-2q)xm.

Denoting equation (15a) as the Riccati
equation associated with system 1 and (15b)
with system 2, it follows that system 1 has the
state equation

q,(t) = Agqa,(t) + Bf(D) (16)
where q(t) = [qT(t), qT(t)] T and the cost func-
tional,

Japf= [T 00 4, + ToRi®)at.

(17

The other system has the state equation and
the cost functional as follows;

d45(t) =Ap,a,(1) + B,f(1) (18)
Iyapin = [ Ta®Qpa,0 +
T (t)RE(E))dt. (19)

On the other hand, substituting (13) for AB
in (14)

o+ HT AT sT5 +psas! - PBRIBTP=0

(20)
and rearranging (20) gives
sTgs + ATsTps + sTpsa —
sTpser !1BTsTPs = 0 21

Defining P = SIPS and Q = S1QS (21) is

(193)
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identical to the algebraic Riccati equation (7)
for the original control problem (3) through
(5).

Assume now that the first system is the
desired system for damping. Thgn, -B2=0 will
leave system 2 undamped and P2=0'(P22 is
not necessarily identical to zero, but certainly
it is a solution to (15b) when 022=0. This
means there is no cost penalty associated with
q2(t). Also note that 132——-_0 satisfies (15¢)
and (15d) with Ql2=0 and Q21=0). It then
follows that the Riccati equation for the
uncoupled system is

T3 T
S11P11511 S1iP11S12

P=sTps= 22)

T — P
S12P11511 S12P11512

where S.., ij=1,2 is partitioned matrices of
S with appropriate dimensions. Since P 1 is
symmetric, P is also symmetric as desired.
By the previous assumption the control input
matrix B will have the form,

B,
B= (23)
_O2n-2q)xm
Therefore, since S is orthogonal
By By
B= =s1p=gT (24)
By 0hxm-

there Bl, BzeRnxm. The numerical value of
B1 can be chosen so that system 1 is control-
lable and that B1=0 but Bz#o if the form of
the state matrix (4) is to be maintained. This
also implies that the hardware for actuators
is simple.

The closed-loop system matrix of system 1
after optimal control is then written as

- _ — -12T=

and, from the equations (4),(8),(22), and (24)
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with B1=O, the closed-loop system matrix of
system (3) is given by

0n

A
A15TeT 5
-K+B,R"'BIs] P

11511

In

(26)
AnTT 3
ByRB2S1oP 1152

The required feedback control vector f(t)
is obtained from (6), (22), and (24);

i(t) = R 1BTPsx(t), (27)
which can now be determined as R, B and P
are known.

It may be possible to make B2R-1B2T812T
Sll=0 in (26) by properly selecting B2 and
the weighting matrices. In general, it will not
be zero and the stiffness of the structure will
be changed. It should also be pointed out that
the matrix C(=B2R'1BTST f’llslz) does not
represent a model with passive damping as C
does not have the proper structure. If the
closed-loop system has the feedback defined
as (27), however, there are no restrictions
since this control law is not for a passive system.

V. An Dlustrative Example

The example chosen for computational pur-
pose has a mass matrix 16 and a stiffness matrix
K

>

R i
511 -6
6 13 -7
K= 7 15 -8
8 17 -9
I 9 19

The system is defined in state sq_ace form with
state vector x(t) =[vI(t), i'T(T)] ;

06 By
x(t) = x(t) +

f(t). (28)
By

K

(194)
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After an equivalence transformation S which
decouples the two lowest modes was applied to
(28), the system was changed to

— : -
Oy I i
1 O4x8
—Kp1 0, | B
. 1
GO =f---- = —F-=—-Ha®+ | | 1w,
, B
| 04 I, 2
Ogxq !
L } ~Kp2 04

where q(t) = Sx(t) with

—1.65133
2.35772
[ 16.81055 0.23648 6.93450 2.07957
0.23648 17.86965 —1.02621 3.41672

6.93450 1.02621 24.26231 -5.16800
| 2.07957 3.41672 —5.16800 18.86528

[ 3.83448
—1.65133

B1™

B2

Thus, system 1 was decoupled and given by
(16) with

I
(29)

-Kg1 0

and the system was to be controlled to mini-
mize the cost functional (17) with given 611=
I,, R=1and B; = [0 0 ~ 1 11T, The input
matrix B1 was chosen so that system 1 was
controllable. (For the state equation of the
form (16) with ABI specified in (29), there
exists a single vector By such that < ABlf
B1> controllable unless subvector [—1 1]
of B1 is in the null space of ()\ZI-KBI), where

AeC satisfies det (\’I-KKg,)=0. Since B, is a
single vector, it reduces the hardware require-
ments significantly. This fact can be deduced
from Laub and Arnold’s work "

The Riccati equation (15a) associated with
(16) and (17) was solved by the eigenvector
method "¢ and solution was computed as



Optimal Control of Large Flexible Structures Via Partial Decoupling 65

_ | 6.31043 1.42106 -0.47965 1.24103
Pi=11.42106 5.51307 0.90973 0.84844
0.47965 0.90973 2.66756 2.46582
1.24103 0.84844 2.46582 4.10804

With the assumption, ]-32=0, the solution
P of (7) was computed by (22) and from (25)
the closed-loop system matrix of system 1 was
obtained as

0 0 1 0
A= 0 0 0 1
B17| 45959 15900 —0.2017 1.6422

2.4127 -2.2964 0.2017 -—1.6422

Finally the feedback control vector f(t) was
computed from (27);

f(t) = I'x(t)

where ' = [-0.4845 —-0.5051 —0.2486
0.0167 0.1396 0.1097 -0.1796 0.1480
0.6793 1.0094 0.9489 0.5501].

The eigenvalues of the system before and after
control were listed in Table 1 below.

Table 1. Eigenvalues A, of the System Matrix.

Mode i A, before control A, after control
1 +j1.135 -0.1713+j L. 141
2 +j2.215 -0.7506+j2. 117
3 +j3.175 +j3.175
4 +j3.980 +3.980
5 +j4.687 +j4.687
6 4 5.470 +i5.470

The input matrix B of the original system
was computed by (24) and B2 is given below
with B 1=0.

B, = [-0.6696 —0.4787 0.1589 0.6767
0.7775 0.4835]T.

VI. Conclusion

A precedure for optimal control of selected
modes was investigated and it was shown that

the control vector could be determined in such
a way that damping was added to the low
frequency modes with the other modes remain-
ing undisturbed. The elimination of this con-
trol spillover was made possible by the partial
decoupling technique for the specific system
matrix. In addition, because of controllability
criteria of linear second-order systems the
hardware requirements on actuators part could
be reduced significantly. However, since infor-
mation on full states is required to construct
the feedback control law, the hardware require-
ments on sensors part are still unsolved.

Because the partial decoupling precedure
requires only eigenvectors of the selected
modes the computing time is reduced consider-
ably when the number of modes involved in
vibration control is less than one fourth of
the total modes. Therefore, in LFSS only a
few of the low frequency modes need to be
controlled and the method of decoupling
and control developed in this paper may be
applicable to vibration control of the struc-
tures.

-Acknowledgement: The authors are thank-
ful to the unknown referees for their kind and
invaluable suggestions.
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