• Title/Summary/Keyword: large scale model test

Search Result 420, Processing Time 0.026 seconds

Design of Fuzzy Model-based Multi-objective Controller and Its Application to MAGLEV ATO system (퍼지 모델 기반 다목적 제어기의 설계와 자기부상열차 자동운전시스템에의 적용)

  • 강동오;양세현;변증남
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.211-217
    • /
    • 1998
  • Many practical control problems for the complex, uncertain or large-scale plants, need to simultaneously achieve a number of objectives, which may conflict or compete with each other. If the conventional optimization methods are applied to solve these control problems, the solution process may be time-consuming and the resulting solution would ofter lose its original meaning of optimality. Nevertheless, the human operators usually performs satisfactory results based on their qualitative and heuristic knowledge. In this paper, we investigate the control strategies of the human operators, and propose a fuzzy model-based multi-objective satisfactory controller. We also apply it to the automatic train operation(ATO) system for the magnetically levitated vehicles(MAGLEV). One of the human operator's strategies is to predict the control result in order to find the meaningful solution. In this paper, Takagi-Sugeno fuzzy model is used to simulated the prediction procedure. Another str tegy is to evaluate the multiple objectives with respect to their own standards. To realize this strategy, we propose the concept of a satisfactory solution and a satisfactory control scheme. The MAGLEV train is a typical example of the uncertain, complex and large-scale plants. Moreover, the ATO system has to satisfy multiple objectives, such as seed pattern tracking, stop gap accuracy, safety and riding comfort. In this paper, the speed pattern tracking controller and the automatic stop controller of the ATO system is designed based on the proposed control scheme. The effectiveness of the ATO system based on the proposed scheme is shown by the experiments with a rotary test bed and a real MAGLEV train.

  • PDF

Shear behavior of geotextile-encased gravel columns in silty sand-Experimental and SVM modeling

  • Dinarvand, Reza;Ardakani, Alireza
    • Geomechanics and Engineering
    • /
    • v.28 no.5
    • /
    • pp.505-520
    • /
    • 2022
  • In recent years, geotextile-encased gravel columns (usually called stone columns) have become a popular method to increasing soil shear strength, decreasing the settlement, acceleration of the rate of consolidation, reducing the liquefaction potential and increasing the bearing capacity of foundations. The behavior of improved loose base-soil with gravel columns under shear loading and the shear stress-horizontal displacement curves got from large scale direct shear test are of great importance in understanding the performance of this method. In the present study, by performing 36 large-scale direct shear tests on sandy base-soil with different fine-content of zero to 30% in both not improved and improved with gravel columns, the effect of the presence of gravel columns in the loose soils were investigated. The results were used to predict the shear stress-horizontal displacement curve of these samples using support vector machines (SVM). Variables such as the non-plastic fine content of base-soil (FC), the area replacement ratio of the gravel column (Arr), the geotextile encasement and the normal stress on the sample were effective factors in the shear stress-horizontal displacement curve of the samples. The training and testing data of the model showed higher power of SVM compared to multilayer perceptron (MLP) neural network in predicting shear stress-horizontal displacement curve. After ensuring the accuracy of the model evaluation, by introducing different samples to the model, the effect of different variables on the maximum shear stress of the samples was investigated. The results showed that by adding a gravel column and increasing the Arr, the friction angle (ϕ) and cohesion (c) of the samples increase. This increase is less in base-soil with more FC, and in a proportion of the same Arr, with increasing FC, internal friction angle and cohesion decreases.

Comparison of Numerical Analyses and Model Test for Evaluation on Hydroelastic and Higher-order Springing Responses of Fixed Cylindrical Structure

  • Kim, Hyun-Sung;Won, Younguk;Oh, Young Jae;Lee, Kangsu;Kim, Byoung Wan
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.191-202
    • /
    • 2021
  • Studies on very large offshore structures are increasing owing to the development of deep sea, large-scale energy generation using ocean resources, and so on. The enlargement of offshore structures makes the hydroelastic effect and low natural frequency related responses important. Numerical analyses and model tests for hydroelastic and higher-order springing responses of fixed cylindrical structures are conducted in this study. The panel methods with and without the hydroelastic effect with shell elements, and the Morison analysis method with beam elements are applied. To observe the hydroelastic effect for structural strength, two structures are considered: bottom-fixed cylindrical structures with high and low bending stiffnesses, respectively. The surge motions at the top of the structure and bending stresses on the structure are observed under regular and irregular wave conditions. The regular wave conditions are generated considering the ratios of the cylindrical outer diameter to the wave lengths, and keeping the wave steepness constant. The model tests are performed in the three-dimensional ocean engineering basin in the KRISO (Korea Research Institute of Ships and Ocean Engineering). From the numerical and experimental results, in which the hydroelastic responses are only observed in the case of the structure with a low bending stiffness, it is confirmed that the hydroelastic responses are highly dependent on the structural stiffness. Additionally, the higher-order phenomenon on the specified wave condition is analyzed by observing the higher-order springing responses when the incident wave frequency or its multiples with the high wave height coincides with the natural frequency of the structure.

Lateral Load Test for Various Aseismatic Methods of Pile Heads of Pier Type Quay Walls (잔교식 안벽의 말뚝 두부 내진 보강기법에 따른 수평재하실험)

  • 이용재;한진태;장인성;김명모
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.98-106
    • /
    • 2003
  • To construct pile-supported wharf structures that must support heavy horizontal loads, both vertical piles and batter piles are used. Batter piles are used to secure the bearing capacity against the horizontal loads. However, past case histories have shown that the heads of batter piles are vulnerable because these heads are subjected to excessive axial loads during earthquakes. Therefore, the aseismatic reinforcement method must be developed to prevent batter pile heads from breaking due to excessive seismic loads. Two different connecting methods of either inserting rubber or ball-bearing between batter pile head and upper plate were proposed to improve the aseismatic efficiency. Three large-scale pile head models(rubber type model, ball-bearing type model, and fixed type model) were manufactured and horizontal loading tests were peformed for these models. The results showed that the force-displacement relationship of the fixed type model was linear, but that of the rubber type model and the ball-bearing type model was bilinear. The increase in the horizontal displacement led to the increase in the horizontal stiffness of the rubber type models and the decrease in that of the ball-bearing type model. Compared with the values for fixed type model, the damping ratios of the rubber type model and the ball-bearing type model increased about 33~185% and 263~269%, respectively.

  • PDF

Antecedents of Employees' Knowledge Integration Capability and Its Effects on Knowledge Creation: Focused on Convergence-Oriented Organizations (조직구성원의 지식통합 역량에 대한 선행 요인과 지식창출 효과에 관한 연구: 융합 지향 조직을 중심으로)

  • Hong, Jinwon;Suh, Woojong
    • Knowledge Management Research
    • /
    • v.15 no.4
    • /
    • pp.105-126
    • /
    • 2014
  • Knowledge integration is becoming a primary function of improving organizational capabilities and performance in today's convergence paradigm. The knowledge integration capability of employees has increasingly been regarded as a critical source for developing new products and services. This study investigates the influential factors of employees' knowledge integration capability and its effects. A theoretical research model was developed based on the socio-technical perspective and information processing theory. The model includes teamwork quality, expertise, IT support, and knowledge complexity as the primary influential factors of employees' knowledge integration capability. A large-scale survey was conducted for gathering data (a total of 316 samples from 141 organizations) to test the proposed model. The test results of the hypotheses show that expertise and knowledge complexity are the significant influential factors of employees' knowledge integration capability, and also the capability has a positive effect on the knowledge creation performance of employees. Our findings contribute to the development of initiatives for promoting employees' knowledge integration capability, especially in knowledge intensive organizations focusing on convergence products and services.

Thermal aging of Gr. 91 steel in supercritical thermal plant and its effect on structural integrity at elevated temperature

  • Min-Gu Won;Si-Hwa Jeong;Nam-Su Huh;Woo-Gon Kim;Hyeong-Yeon Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • In this study, the influence of thermal aging on structural integrity is investigated for Gr. 91 steel. A commercial grade Gr. 91 steel is used for the virgin material, and service-exposed Gr. 91 steel is sampled from a steam pipe of a super critical plant. Time versus creep strain curves are obtained through creep tests with various stress levels at 600 ℃ for the virgin and service-exposed Gr. 91 steels, respectively. Based on the creep test results, the improved Omega model is characterized for describing the total creep strain curve for both Gr. 91 steels. The proposed parameters for creep deformation model are used for predicting the steady-state creep strain rate, creep rupture curve, and stress relaxation. Creep-fatigue damage is evaluated for the intermediate heat exchanger (IHX) in a large-scale sodium test facility of STELLA-2 by using creep deformation model with proposed creep parameters and creep rupture curve for both Gr. 91 steels. Based on the comparison results of creep fatigue damage for the virgin and service-exposed Gr. 91 steels, the thermal aging effect has been shown to be significant.

Simulation and Experimental Study of A TLP Type Floating Wind Turbine with Spoke Platform

  • Kim, Hyuncheol;Kim, Imgyu;Kim, Yong Yook;Youn, DongHyup;Han, Soonhung
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.4
    • /
    • pp.179-191
    • /
    • 2016
  • As the demand for renewable energy has increased following the worldwide agreement to act against global climate change and disaster, large-scale floating offshore wind systems have become a more viable solution. However, the cost of the whole system is still too high for practical realization. To make the cost of a floating wind system be more economical, a new concept of tension leg platform (TLP) type ocean floating wind system has been developed. To verify the performance of a 5-MW TLP type ocean floating wind power system designed by the Korea Advanced Institute of Science and Technology, the FAST simulation developed by the National Renewable Energy Laboratory is used. Further, 1/50 scale model tests have been carried out in the ocean engineering tank of the Research Institute of Medium and Small Shipbuilding, Korea. This paper compares the simulation and ocean engineering tank test results on motion prediction and tension assessment of the TLP anchor.

Micro In-situ Tests on Overconsolidated Clay Prepared in Chambers (토조내에 준비된 과압밀 점토에 대한 모형 원위치 시험)

  • Cho Nam Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.5-16
    • /
    • 2005
  • Tn this study, model soil deposits are prepared in large test chambers to minimize the scale effects. Also, slurry of mixture containing 50 percent kaolin clay and 50 percent silica has been consolidated to simulate the process of natural soil deposit formation and to reduce the consolidation time. To provide a more detailed description of varying soil properties along the soil profile of model clay deposits and to compare the in-situ test results with those from prototype tests, miniature in-situ tests, including vane shear, piezoprobe, and cone penetration tests were conducted in each of the clay deposits. The current results indicate that consistent soil deposits were prepared for the current and previous test programs. Also, reasonable predicting methods of prototype behavior based on model in-situ test results were suggested in this study by examining differences between the test results from both the model and prototype tests.

A hydrodynamic model of nearshore waves and wave-induced currents

  • Sief, Ahmed Khaled;Kuroiwa, Masamitsu;Abualtayef, Mazen;Mase, Hajime;Matsubara, Yuhei
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.3
    • /
    • pp.216-224
    • /
    • 2011
  • In This study develops a quasi-three dimensional numerical model of wave driven coastal currents with accounting the effects of the wave-current interaction and the surface rollers. In the wave model, the current effects on wave breaking and energy dissipation are taken into account as well as the wave diffraction effect. The surface roller associated with wave breaking was modeled based on a modification of the equations by Dally and Brown (1995) and Larson and Kraus (2002). Furthermore, the quasi-three dimensional model, which based on Navier-Stokes equations, was modified in association with the surface roller effect, and solved using frictional step method. The model was validated by data sets obtained during experiments on the Large Scale Sediment Transport Facility (LSTF) basin and the Hazaki Oceanographical Research Station (HORS). Then, a model test against detached breakwater was carried out to investigate the performance of the model around coastal structures. Finally, the model was applied to Akasaki port to verify the hydrodynamics around coastal structures. Good agreements between computations and measurements were obtained with regard to the cross-shore variation in waves and currents in nearshore and surf zone.

Performance Test and Numerical Model Development of Restoring Viscous Damper for X-type Damper System (X형 감쇠시스템을 위한 복원성 점성 감쇠기 성능 실험 및 수치모형 개발)

  • Kim, David;Park, Jangho;Ok, Seung-Yong;Park, Wonsuk
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.52-57
    • /
    • 2016
  • In this study, a restoring viscous damper is introduced for X-type damper system which is designed for the seismic response control of large spatial structures. A nonlinear numerical model for its behavior is developed using the result of dynamic loading tests. The X-type damper system is composed of restoring viscous dampers and connecting devices such as adjustable wire bracing, where the damping capacity of the system is controllable by changing the number of the dampers. The restoring viscous damper is devised to exert main damping force in tension direction, which is effective to prevent the buckling of bracing subjected to compressive axial force. To evaluate the performance of the proposed damper, dynamic cyclic loading tests are performed by using manufactured dampers at full scale. In order to construct the numerical model of the damper system, its model parameters are first identified using a nonlinear curve fitting method with the test data. The numerical simulations are then performed to validate the accuracy of the numerical model in comparison with the experimental test results. It is expected that the proposed system is effectively applicable to various building structures for seismic performance enhancement.