• Title/Summary/Keyword: large scale image

Search Result 497, Processing Time 0.026 seconds

Application of Geo-Segment Anything Model (SAM) Scheme to Water Body Segmentation: An Experiment Study Using CAS500-1 Images (수체 추출을 위한 Geo-SAM 기법의 응용: 국토위성영상 적용 실험)

  • Hayoung Lee;Kwangseob Kim;Kiwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.343-350
    • /
    • 2024
  • Since the release of Meta's Segment Anything Model (SAM), a large-scale vision transformer generation model with rapid image segmentation capabilities, several studies have been conducted to apply this technology in various fields. In this study, we aimed to investigate the applicability of SAM for water bodies detection and extraction using the QGIS Geo-SAM plugin, which enables the use of SAM with satellite imagery. The experimental data consisted of Compact Advanced Satellite 500 (CAS500)-1 images. The results obtained by applying SAM to these data were compared with manually digitized water objects, Open Street Map (OSM), and water body data from the National Geographic Information Institute (NGII)-based hydrological digital map. The mean Intersection over Union (mIoU) calculated for all features extracted using SAM and these three-comparison data were 0.7490, 0.5905, and 0.4921, respectively. For features commonly appeared or extracted in all datasets, the results were 0.9189, 0.8779, and 0.7715, respectively. Based on analysis of the spatial consistency between SAM results and other comparison data, SAM showed limitations in detecting small-scale or poorly defined streams but provided meaningful segmentation results for water body classification.

The Consideration for Optimum 3D Seismic Processing Procedures in Block II, Northern Part of South Yellow Sea Basin (대륙붕 2광구 서해분지 북부지역의 3D전산처리 최적화 방안시 고려점)

  • Ko, Seung-Won;Shin, Kook-Sun;Jung, Hyun-Young
    • The Korean Journal of Petroleum Geology
    • /
    • v.11 no.1 s.12
    • /
    • pp.9-17
    • /
    • 2005
  • In the main target area of the block II, Targe-scale faults occur below the unconformity developed around 1 km in depth. The contrast of seismic velocity around the unconformity is generally so large that the strong multiples and the radical velocity variation would deteriorate the quality of migrated section due to serious distortion. More than 15 kinds of data processing techniques have been applied to improve the image resolution for the structures farmed from this active crustal activity. The bad and noisy traces were edited on the common shot gathers in the first step to get rid of acquisition problems which could take place from unfavorable conditions such as climatic change during data acquisition. Correction of amplitude attenuation caused from spherical divergence and inelastic attenuation has been also applied. Mild F/K filter was used to attenuate coherent noise such as guided waves and side scatters. Predictive deconvolution has been applied before stacking to remove peg-leg multiples and water reverberations. The velocity analysis process was conducted at every 2 km interval to analyze migration velocity, and it was iterated to get the high fidelity image. The strum noise caused from streamer was completely removed by applying predictive deconvolution in time space and ${\tau}-P$ domain. Residual multiples caused from thin layer or water bottom were eliminated through parabolic radon transform demultiple process. The migration using curved ray Kirchhoff-style algorithm has been applied to stack data. The velocity obtained after several iteration approach for MVA (migration velocity analysis) was used instead or DMO for the migration velocity. Using various testing methods, optimum seismic processing parameter can be obtained for structural and stratigraphic interpretation in the Block II, Yellow Sea Basin.

  • PDF

An Improvement of Interoperability for HD-Class VOD Content Management System Based on H.264 (H.264 기반 HD급 VOD 콘텐츠관리시스템 상호운용성 개선)

  • Min, Byung-Won
    • Journal of Digital Convergence
    • /
    • v.12 no.2
    • /
    • pp.315-320
    • /
    • 2014
  • Recently, although the requirement of quality of VOD content has been transferred upto the class of HD, conventional management systems characterized by OS dependency are truly limited in quality of video image, stability, and compatibility of network environments. In addition most of the content management systems realize very limited capabilities for the real affairs of content management and distribution services in such an OS dependent environment. In this paper, we propose a new scheme of HD-Class VOD Content Management System to solve these problems. We design and implement the proposed system based on open sources by using H.264 video compression method. The proposed system offers high quality content management method based on opened systems and independent on-line distribution method so that it can be realized as an integrated management scheme for VOD contents. Moreover, our system solves the problems of occasional cutting-down video, small screen, and poor image quality that exist in the conventional wmv-type CMS. According to the result of performance evaluation, our system maintains sufficient performance and tolerence for the case of large scale HD content operations or fabrications. We expect that the proposed integrated DB scheme will especially be effective when the content management applications are changed from Internet Web environments to mobile terminal environments.

Estimatation of Mean Velocity from Surface Velocity (표면유속을 이용한 평균유속 추정방법의 개발)

  • Roh, Young-Sin;Yoon, Byung-Man;Yu, Kwon-Kyu
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.11
    • /
    • pp.917-925
    • /
    • 2005
  • LSIV (Large Scale Image Velcocimetry) Is one of the image-based velocity measurement techniques. Since it measures surface velocities, it gives simple and inexpensive way to measure velocity, compared to other methods. Because of these advantages, there have been many studies to apply LSIV to the river discharge measurement in the field. Measuring the discharge by using LSIV requires a method which converts a surface velocity to a mean velocity In the present study, experiments and analysis of vortical velocity profile of open-channel flow in various conditions were performed to develop methods which estimate a mean velocity from a surface velocity. The result of this experiment reveals that velocity-dip phenomena occur at free-surface layer in open channel flow and Froude number affects more than bed roughness does. Two methods for estimating the mean velocity were proposed. One is to correct the wake law's profiles by using the difference of surface velocity from the mean velocity, and the other is to use the ratio of mean and surface velocities. The result of applying these methods in an experiment shows that they are quite accurate having an error of approximately $6\%$ only.

Design and Implementation of HD-Class VOD Content Management System Based on H.264 (H.264 기반 HD급 VOD 콘텐츠관리시스템 설계 및 구현)

  • Min, Byoung-Won;Oh, Yong-Sun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.9
    • /
    • pp.18-30
    • /
    • 2009
  • Recently, although the requirement of quality of VOD content has been transferred upto the class of HD, conventional management systems characterized by OS dependency are truly limited in quality of video image, stability, and compatibility of network environments. In addition most of the content management systems realize very limited capabilities for the real affairs of content management and distribution services in such an OS dependent environment. In this paper, we propose a new scheme of HD-Class VOD Content Management System to solve these problems. We design and implement the proposed system based on open sources by using H.264 video compression method. The proposed system offers high quality content management method based on opened systems and independent on-line distribution method so that it can be realized as an integrated management scheme for VOD contents. Moreover, our system solves the problems of occasional cutting-down video, small screen, and poor image quality that exist in the conventional wmv-type CMS. According to the result of performance evaluation, our system maintains sufficient performance and tolerence for the case of large scale HD content operations or fabrications. We expect that the proposed integrated DB scheme will especially be effective when the content management applications are changed from Internet Web environments to mobile terminal environments.

A vision-based system for long-distance remote monitoring of dynamic displacement: experimental verification on a supertall structure

  • Ni, Yi-Qing;Wang, You-Wu;Liao, Wei-Yang;Chen, Wei-Huan
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.769-781
    • /
    • 2019
  • Dynamic displacement response of civil structures is an important index for in-construction and in-service structural condition assessment. However, accurately measuring the displacement of large-scale civil structures such as high-rise buildings still remains as a challenging task. In order to cope with this problem, a vision-based system with the use of industrial digital camera and image processing has been developed for long-distance, remote, and real-time monitoring of dynamic displacement of supertall structures. Instead of acquiring image signals, the proposed system traces only the coordinates of the target points, therefore enabling real-time monitoring and display of displacement responses in a relatively high sampling rate. This study addresses the in-situ experimental verification of the developed vision-based system on the Canton Tower of 600 m high. To facilitate the verification, a GPS system is used to calibrate/verify the structural displacement responses measured by the vision-based system. Meanwhile, an accelerometer deployed in the vicinity of the target point also provides frequency-domain information for comparison. Special attention has been given on understanding the influence of the surrounding light on the monitoring results. For this purpose, the experimental tests are conducted in daytime and nighttime through placing the vision-based system outside the tower (in a brilliant environment) and inside the tower (in a dark environment), respectively. The results indicate that the displacement response time histories monitored by the vision-based system not only match well with those acquired by the GPS receiver, but also have higher fidelity and are less noise-corrupted. In addition, the low-order modal frequencies of the building identified with use of the data obtained from the vision-based system are all in good agreement with those obtained from the accelerometer, the GPS receiver and an elaborate finite element model. Especially, the vision-based system placed at the bottom of the enclosed elevator shaft offers better monitoring data compared with the system placed outside the tower. Based on a wavelet filtering technique, the displacement response time histories obtained by the vision-based system are easily decomposed into two parts: a quasi-static ingredient primarily resulting from temperature variation and a dynamic component mainly caused by fluctuating wind load.

A Study on the Design of Prediction Model for Safety Evaluation of Partial Discharge (부분 방전의 안전도 평가를 위한 예측 모델 설계)

  • Lee, Su-Il;Ko, Dae-Sik
    • Journal of Platform Technology
    • /
    • v.8 no.3
    • /
    • pp.10-21
    • /
    • 2020
  • Partial discharge occurs a lot in high-voltage power equipment such as switchgear, transformers, and switch gears. Partial discharge shortens the life of the insulator and causes insulation breakdown, resulting in large-scale damage such as a power outage. There are several types of partial discharge that occur inside the product and the surface. In this paper, we design a predictive model that can predict the pattern and probability of occurrence of partial discharge. In order to analyze the designed model, learning data for each type of partial discharge was collected through the UHF sensor by using a simulator that generates partial discharge. The predictive model designed in this paper was designed based on CNN during deep learning, and the model was verified through learning. To learn about the designed model, 5000 training data were created, and the form of training data was used as input data for the model by pre-processing the 3D raw data input from the UHF sensor as 2D data. As a result of the experiment, it was found that the accuracy of the model designed through learning has an accuracy of 0.9972. It was found that the accuracy of the proposed model was higher in the case of learning by making the data into a two-dimensional image and learning it in the form of a grayscale image.

  • PDF

Study of Imaging of Submarine Bubble Plume with Reverse Time Migration (역시간 구조보정을 활용한 해저 기포플룸 영상화 연구)

  • Dawoon Lee;Wookeen Chung;Won-Ki Kim;Ho Seuk Bae
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.1
    • /
    • pp.8-17
    • /
    • 2023
  • Various sources, such as wind, waves, ships, and gas leaks from the seafloor, forms bubbles in the ocean. Underwater bubbles cause signal scattering, considerably affecting acoustic measurements. This characteristic of bubbles is used to block underwater noise by attenuating the intensity of the propagated signal. Recently, researchers have been studying the large-scale release of methane gas as bubble plumes from the seabed. Understanding the physical properties and distribution of bubble plumes is crucial for studying the relation between leaked methane gas and climate change. Therefore, a water tank experiment was conducted to estimate the distribution of bubble plumes using seismic imaging techniques and acoustic signals obtained from artificially generated bubbles using a bubble generator. Reverse time migration was applied to image the bubble plumes while the acquired acoustic envelope signal was used to effectively estimate bubble distribution. Imaging results were compared with optical camera images to verify the estimated bubble distribution. The water tank experiment confirmed that the proposed system could successfully image the distribution of bubble plumes using reverse time migration and the envelope signal. The experiment showed that the scattering signal of artificial bubble plumes can be used for seismic imaging.

CINEMAPIC : Generative AI-based movie concept photo booth system (시네마픽 : 생성형 AI기반 영화 컨셉 포토부스 시스템)

  • Seokhyun Jeong;Seungkyu Leem;Jungjin Lee
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.3
    • /
    • pp.149-158
    • /
    • 2024
  • Photo booths have traditionally provided a fun and easy way to capture and print photos to cherish memories. These booths allow individuals to capture their desired poses and props, sharing memories with friends and family. To enable diverse expressions, generative AI-powered photo booths have emerged. However, existing AI photo booths face challenges such as difficulty in taking group photos, inability to accurately reflect user's poses, and the challenge of applying different concepts to individual subjects. To tackle these issues, we present CINEMAPIC, a photo booth system that allows users to freely choose poses, positions, and concepts for their photos. The system workflow includes three main steps: pre-processing, generation, and post-processing to apply individualized concepts. To produce high-quality group photos, the system generates a transparent image for each character and enhances the backdrop-composited image through a small number of denoising steps. The workflow is accelerated by applying an optimized diffusion model and GPU parallelization. The system was implemented as a prototype, and its effectiveness was validated through a user study and a large-scale pilot operation involving approximately 400 users. The results showed a significant preference for the proposed system over existing methods, confirming its potential for real-world photo booth applications. The proposed CINEMAPIC photo booth is expected to lead the way in a more creative and differentiated market, with potential for widespread application in various fields.

A Study on the Automation Algorithm to Identify the Geological Lineament using Spatial Statistical Analysis (공간통계분석을 이용한 지질구조선 자동화 알고리즘 연구)

  • Kwon, O-Il;Kim, Woo-Seok;Kim, Jin-Hwan;Kim, Gyo-Won
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.367-376
    • /
    • 2017
  • Recently, tunneling under the seabed is becoming increasingly common in many countries. In Korea, there are proposals to tunnel from the mainland to Jeju Island. Safe construction requires geologic structures such as faults to be characterized during the design and construction phase; however, unlike on land, such structures are difficult to survey seabed. This study aims to develop an algorithm that uses geostatistics to automatically derive large-scale geological structures on the seabed. The most important considerations in this method are the optimal size of the moving window, the optimal type of spatial statistics, and determination of the optimal percentile standard. Finally, the optimal analysis algorithm was developed using the R program, which comprehensibly presents variations in spatial statistics. The program allows the type and percentile standard of spatial statistics to be specified by the user, thus enabling an analysis of the geological structure according to variations in spatial statistics. The geotechnical defense-training algorithm shows that a large, linear geological lineament is best visualized using a $3{\times}3$ moving window and a 10% upper standard based on the moving variance value and fractile. In particular, setting the fractile criterion to the upper 0.5% almost entirely eliminates the error values from the contour image.