• Title/Summary/Keyword: large scale experiments

Search Result 558, Processing Time 0.028 seconds

Vibration Analysis and Reduction for Large-scale Diesel Engines (대형 디젤엔진의 진동 분석과 저감)

  • Bae, Yong-Chae;Kim, Hee-Soo;Lee, Wook-Ryun;Lee, Doo-Young;Kim, Bong-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.1047-1052
    • /
    • 2011
  • Diesel engines are widely used as power supplies for isolated islands as well as emergency power supplies for large-capacity power plants because of their rapid response to operation, high reliability, and good durability. However, diesel engines are also vulnerable to damage or degradation of reliability when high levels of vibration are generated in them. This paper shows experiments and analysis for the determination of the causes of high-vibration phenomena in large-scale diesel engines, which have experienced various power decreases over several years because of the high levels of vibration. The main cause of the vibration is identified as the resonance created by the torsional vibration of its crank axis, and the appropriate countermeasures that were designed worked well when applied in field tests.

Runtime Prediction Based on Workload-Aware Clustering (병렬 프로그램 로그 군집화 기반 작업 실행 시간 예측모형 연구)

  • Kim, Eunhye;Park, Ju-Won
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.3
    • /
    • pp.56-63
    • /
    • 2015
  • Several fields of science have demanded large-scale workflow support, which requires thousands of CPU cores or more. In order to support such large-scale scientific workflows, high capacity parallel systems such as supercomputers are widely used. In order to increase the utilization of these systems, most schedulers use backfilling policy: Small jobs are moved ahead to fill in holes in the schedule when large jobs do not delay. Since an estimate of the runtime is necessary for backfilling, most parallel systems use user's estimated runtime. However, it is found to be extremely inaccurate because users overestimate their jobs. Therefore, in this paper, we propose a novel system for the runtime prediction based on workload-aware clustering with the goal of improving prediction performance. The proposed method for runtime prediction of parallel applications consists of three main phases. First, a feature selection based on factor analysis is performed to identify important input features. Then, it performs a clustering analysis of history data based on self-organizing map which is followed by hierarchical clustering for finding the clustering boundaries from the weight vectors. Finally, prediction models are constructed using support vector regression with the clustered workload data. Multiple prediction models for each clustered data pattern can reduce the error rate compared with a single model for the whole data pattern. In the experiments, we use workload logs on parallel systems (i.e., iPSC, LANL-CM5, SDSC-Par95, SDSC-Par96, and CTC-SP2) to evaluate the effectiveness of our approach. Comparing with other techniques, experimental results show that the proposed method improves the accuracy up to 69.08%.

A Review and Analysis of the Thermal Exposure in Large Compartment Fire Experiments

  • Gupta, Vinny;Hidalgo, Juan P.;Lange, David;Cowlard, Adam;Abecassis-Empis, Cecilia;Torero, Jose L.
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.4
    • /
    • pp.345-364
    • /
    • 2021
  • Developments in the understanding of fire behaviour for large open-plan spaces typical of tall buildings have been greatly outpaced by the rate at which these buildings are being constructed and their characteristics changed. Numerous high-profile fire-induced failures have highlighted the inadequacy of existing tools and standards for fire engineering when applied to highly-optimised modern tall buildings. With the continued increase in height and complexity of tall buildings, the risk to the occupants from fire-induced structural collapse increases, thus understanding the performance of complex structural systems under fire exposure is imperative. Therefore, an accurate representation of the design fire for open-plan compartments is required for the purposes of design. This will allow for knowledge-driven, quantifiable factors of safety to be used in the design of highly optimised modern tall buildings. In this paper, we review the state-of-the-art experimental research on large open-plan compartment fires from the past three decades. We have assimilated results collected from 37 large-scale compartment fire experiments of the open-plan type conducted from 1993 to 2019, covering a range of compartment and fuel characteristics. Spatial and temporal distributions of the heat fluxes imposed on compartment ceilings are estimated from the data. The complexity of the compartment fire dynamics is highlighted by the large differences in the data collected, which currently complicates the development of engineering tools based on physical models. Despite the large variability, this analysis shows that the orders of magnitude of the thermal exposure are defined by the ratio of flame spread and burnout front velocities (VS / VBO), which enables the grouping of open-plan compartment fires into three distinct modes of fire spread. Each mode is found to exhibit a characteristic order of magnitude and temporal distribution of thermal exposure. The results show that the magnitude of the thermal exposure for each mode are not consistent with existing performance-based design models, nevertheless, our analysis offers a new pathway for defining thermal exposure from realistic fire scenarios in large open-plan compartments.

PARALLAX ADJUSTMENT FOR REALISTIC 3D STEREO VIEWING OF A SINGLE REMOTE SENSING IMAGE

  • Kim, Hye-Jin;Choi, Jae-Wan;Chang, An-Jin;Yu, Ki-Yun
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.452-455
    • /
    • 2007
  • 3D stereoscopic viewing of large scale imagery, such as aerial photography and satellite images, needs different parallaxes relative to the display scale. For example, when a viewer sees a stereoscopic image of aerial photography, the optimal parallax of its zoom-in image should be smaller than that of its zoom-out. Therefore, relative parallax adjustment according to the display scale is required. Merely adjusting the spacing between stereo images is not appropriate because the depths of the whole image are either exaggerated or reduced entirely. This paper focuses on the improving stereoscopic viewing with a single remote sensing image and a digital surface model (DSM). We present the parallax adjustment technique to maximize the 3D realistic effect and the visual comfort. For remote sensing data, DSM height value can be regarded as disparity. There are two possible kinds of methods to adjust the relative parallax with a single image performance. One is the DSM compression technique: the other is an adjustment of the distance between the original image and its stereo-mate. In our approach, we carried out a test to evaluate the optimal distance between a single remote sensing image and its stereo-mate, relative to the viewing scale. Several synthetic stereo-mates according to certain viewing scale were created using a parallel projection model and their anaglyphs were estimated visually. The occlusion of the synthetic stereo-mate was restored by the inpainting method using the fields of experts (FoE) model. With the experiments using QuickBird imagery, we could obtain stereoscopic images with optimized parallax at varied display scales.

  • PDF

Optimal-synchronous Parallel Simulation for Large-scale Sensor Network (대규모 센서 네트워크를 위한 최적-동기식 병렬 시뮬레이션)

  • Kim, Bang-Hyun;Kim, Jong-Hyun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.5
    • /
    • pp.199-212
    • /
    • 2008
  • Software simulation has been widely used for the design and application development of a large-scale wireless sensor network. The degree of details of the simulation must be high to verify the behavior of the network and to estimate its execution time and power consumption of an application program as accurately as possible. But, as the degree of details becomes higher, the simulation time increases. Moreover, as the number of sensor nodes increases, the time tends to be extremely long. We propose an optimal-synchronous parallel discrete-event simulation method to shorten the time in a large-scale sensor network simulation. In this method, sensor nodes are partitioned into subsets, and each PC that is interconnected with others through a network is in charge of simulating one of the subsets. Results of experiments using the parallel simulator developed in this study show that, in the case of the large number of sensor nodes, the speedup tends to approach the square of the number of PCs participating in the simulation. In such a case, the ratio of the overhead due to parallel simulation to the total simulation time is so small that it can be ignored. Therefore, as long as PCs are available, the number of sensor nodes to be simulated is not limited. In addition, our parallel simulation environment can be constructed easily at the low cost because PCs interconnected through LAN are used without change.

Hydraulic and Numerical Model Experiments of Flows in Circulation-Water-Pump Chambers (순환수취수펌프장 내의 흐름에 대한 수리 및 수치모형실험)

  • Yi, Yong-Kon;Cheong, Sang-Hwa;Kim, Chang-Wan
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.8 s.157
    • /
    • pp.631-643
    • /
    • 2005
  • The objective of this study is to perform hydraulic and numerical model experiments of the flows in circulation-water-pump(CWP) chambers of combined cycle power plants (CCPP) to be built and to suggest improvement plans if the flows might cause a serious problem on the operation of CWPs. Hydraulic model was constructed in a scale of 1 to 20 using acrylic sheets and a two dimensional numerical model used was RMA2. To evaluate results of Hydraulic and numerical model experiments, evaluation criteria of flow conditions in the intake canal and CWP chambers were determined. Vertical vorticities obtained from numerical simulations for the initial plan of CCPPs were qualitatively compared with results of hydraulic model experiments and the formation possibility of a large scale vortex, one of the flow evaluation criteria, was evaluated. The initial plan was found not to satisfy the flow evaluation. Nine improvement plans were devised and numerically simulated. Four alternative plans among nine improvement plans were selected and hydraulically experimented. On the ground of the results of hydraulic model experiments, a final improvement plan, one of four improvement plants, was suggested. When CWP chambers and intake canals were designed with spatial constraints, flow separating wall and guide walls were found to improve flow conditions in CWP chambers.

An Experimental Investigation on Effects of Gas Hydrate Formation Factors For NGH Transport Technology Development (NGH 수송기술 개발을 위한 주요 인자별 제조특성 실험 연구)

  • Kim, You-Na;Shin, Chang-Hoon;Han, Jeong-Min;Shin, Kwang-Sik;Kim, Byoung-Joo;Lee, Jeong-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.511-514
    • /
    • 2007
  • Gas hydrate has a unique property that can store a large volume of gas in water as a solid form. Even though investigations for natural gas storage technology have been carried out for several decades, there are still a lot of unsolved problems due to complex formation process, low formation speed, high energy consumption and so on. So, lots of experiments were conducted to overcome these weaknesses and to develop artificial NGH formation technology applicable to industrial-scale storage and commercial transport. In this study, some series of experiments were performed to analyze both stirred and unstirred system especially about the influences of several gas hydrate formation factors such as agitation speed, system temperature, SDS concentration, etc. As a result, optimum range of SDS concentration and temperature that could enhance the storage capacity and shorten the formation time were found. And it is obviously presented that SDS such a kind of surfactant promotes gas hydrate formation dramatically and the quantity of stored gas are proportional to agitation speed in stirred system.

  • PDF

Studies on the Cattle Tick killing and Repellent Effects of the Ingredients of Radix Jingyu (진구성분의 소진드기 구제(驅除)(살충(殺蟲) 및 기피(忌避))효과(效力)에 관한 연구(硏究))

  • Lee, Jang-Nag
    • Korean Journal of Veterinary Research
    • /
    • v.2 no.2
    • /
    • pp.15-24
    • /
    • 1962
  • In the previous report it was demonstrated that aqueous extracts of two Korean indigenous crude drugs, Radix Jingyu and Fructus ponciri, have an excellent tick repellent effect, and also the need for further analytical study of these crude drugs was suggested. In the experiments to be reported herein, attempts were made to find out the active ingredients from Radix Jingyu, since the aqueons extract of Radix Jingyu proved to be mone effective than that of Fructus ponciri. It will be shown that the active ingredient is indicative of Lycaconitine, a known alkaloid. An aqueons solution containing 1.5 Gms of Lycaconitine in tartrate when sprayed on a cow exerted tick repellent effect against Boophilus microplus which lasted approximately 25 days without any harmful influences on cattle. It will also be shown that the oil-fat components of Radix Jingyu act synergistically with Lycaconitine in accelerating and lengthening the effect, although the components alone have no effect under the conditions tested. It was of interest to note that the oil-fat components of Radix Jingyu showed definite repellent effect against the larvae of Boophilus microplus in laboratory experiments by the method newly devised. On the basis of these observations, it was concluded that Lycaconitine can be used as cattle tick repellent, and the evidence seems to warrant a large scale production of Lycaconitine for its widespread use. Further studies on the possible effect of the alkaloid on other genera or species of ticks and related vermins were also indicated.

  • PDF

Predictive modeling of surface roughness and material removal In powder blasting of glass by design of experiments (파우더 블라스팅을 이용한 유리 가공시 실험계획법에 의한 가공면 분석)

  • Jin Quan-Qia;Kim J.K.;Han J.Y.;Seong E.J.;Park Dong-Sam;Yoo W.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.681-684
    • /
    • 2005
  • The old technique of sandblasting which has been used for paint or scale removing, deburring, and glass decorating has recently been developed into a powder blasting technique for brittle materials, capable of producing micro structures larger than 100um. A large number of Investigations on the abrasive jet machining with output parameters as material removal rate, penetrate and surface finish have been carried out and reported by various authors. In this paper, we investigated the effect of surface characteristics and surface shape of the abrasive jet machined glass surface under different blasting parameter. and finally we established a model for abrasive flow machining process, and compared with experimental results.

  • PDF

THERMAL AND SMOKE MEASUREMENTS OF VEHICLE FIRES Establishing practical large-scale experiment for vehicle fires

  • Kim, Jeong-Hun;Kim, Hong;Lee, Bog-Young;Lee, Chang-Seop
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.335-342
    • /
    • 1997
  • Experiments were conducted to evaluate the hazard risks of vehicle fires. Sensors were strategically placed in passenger cars to determine the temperature, propagation rate and direction of flame. The life safety hazard evaluations such as smoke and gas analysis were included. An important ignition position was performed in the engine compartment. The effects of different ignition positions and the opening of door glasses were also reviewed. The experimental results indicate that the maximum temperature when a vehicle burns varies commonly from 90$0^{\circ}C$ -100$0^{\circ}C$. The flame reaches in the face of a driver about 6-7minutes and the windshield glass breaks about 10 minutes after the ignition in the engine compartment of vehicle. And the smoke and gas concentrations reached the limit of human inhalation after 13-14 minutes. Especially the concentrations of carbon monoxide exceeded the TWA(50 ppm) during short time after ignition in cases of all experiments.

  • PDF