• Title/Summary/Keyword: large motor-generator

Search Result 54, Processing Time 0.024 seconds

Partial Discharge Ultrasonic Analysis for Generator Stator Windings

  • Yang, Yong-Ming;Chen, Xue-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.670-676
    • /
    • 2014
  • The objective of this research is to utilize the ultrasonic method to analyze the property of partial discharge (PD) which is generated by the winding of the insulation stator in the generator. Therefore, a PD measurement system is built based on ultrasonic and virtual instruments. Three types of PD models (internal PD model, surface PD model and slot PD model) have been constructed. With the analysis of these experimental results, this research has identified the ultrasonic signals of the discharges which were produced by three types of PD models. This analysis shows the different features among these PD types. Both the time domain and frequency domain of the ultrasonic signals are obviously different. In addition, an experiment based on a large rotating machine has been done to analyze ultrasonic noises. The result indicates that the ultrasonic noises can be wiped off by the filters and algorithms. The application of this system is convenient for the detection of early signs of insulation failure, which is an effective method for diagnosis of insulation faults.

Development of Chip-based Precision Motion Controller

  • Cho, Jung-Uk;Jeon, Jae-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1022-1027
    • /
    • 2003
  • The Motion controllers provide the sophisticated performance and enhanced capabilities we can see in the movements of robotic systems. Several types of motion controllers are available, some based on the kind of overall control system in use. PLC (Programmable Logic Controller)-based motion controllers still predominate. The many peoples use MCU (Micro Controller Unit)-based board level motion controllers and will continue to in the near-term future. These motion controllers control a variety motor system like robotic systems. Generally, They consist of large and complex circuits. PLC-based motion controller consists of high performance PLC, development tool, and application specific software. It can be cause to generate several problems that are large size and space, much cabling, and additional high coasts. MCU-based motion controller consists of memories like ROM and RAM, I/O interface ports, and decoder in order to operate MCU. Additionally, it needs DPRAM to communicate with host PC, counter to get position information of motor by using encoder signal, additional circuits to control servo, and application specific software to generate a various velocity profiles. It can be causes to generate several problems that are overall system complexity, large size and space, much cabling, large power consumption and additional high costs. Also, it needs much times to calculate velocity profile because of generating by software method and don't generate various velocity profiles like arbitrary velocity profile. Therefore, It is hard to generate expected various velocity profiles. And further, to embed real-time OS (Operating System) is considered for more reliable motion control. In this paper, the structure of chip-based precision motion controller is proposed to solve above-mentioned problems of control systems. This proposed motion controller is designed with a FPGA (Field Programmable Gate Arrays) by using the VHDL (Very high speed integrated circuit Hardware Description Language) and Handel-C that is program language for deign hardware. This motion controller consists of Velocity Profile Generator (VPG) part to generate expected various velocity profiles, PCI Interface part to communicate with host PC, Feedback Counter part to get position information by using encoder signal, Clock Generator to generate expected various clock signal, Controller part to control position of motor with generated velocity profile and position information, and Data Converter part to convert and transmit compatible data to D/A converter.

  • PDF

Development of crank shaft mounted ISG(Integrated Starter Generator) (크랭크축 직결형 42V기동/발전기(ISG)의 개발)

  • Bae Bon-ho;Yun Seok-Young;Sul Seung-ki
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.653-656
    • /
    • 2002
  • This paper presents the development of 15G(Integrate Starter Generator). The ISG is the crank shaft mount type and it is installed at tile flywheel. The wide operating range of ISG requires large constant power speed ratio, good overload performance and high efficiency. High saliency ratio permanent magnet motor is developed for the ISG applications and 500A MOSFET inverter is designed to derive the ISG. The characteristic of developed ISG is investigated using the special test-bed for the 42V PowerNet and the detailed results is presented

  • PDF

Study on Load Following Characteristics of Generators during Start-up of Induction Motor Load in Isolated System (독립계통에서 유도전동기 부하의 기동시 발전기의 안정적 부하추종에 관한 연구)

  • Shin, Ho-Jeon;Huh, Jae-Sun;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.5
    • /
    • pp.80-85
    • /
    • 2015
  • Recently, not only in the Middle East and Southeast Asia but in African area, too, industrial plant construction is being actually done. But unlike in Korea, a lot of them are small-scale isolated industrial plants. And because of the characteristics of industrial plants, induction motors' load forms a large part. The influence of stability resulted from the maneuver and operation of induction motors' load may lead to serious result in the isolated system. This study analyzed it through mathematical modeling on induction motors' maneuver phenomena in the isolated system, realized a case system with the E-TAP program, and simulated load follow performances according to the control variables of a generator inside the isolated system.

Electrical Parameter Evaluation of 1 MW HTS Motor via Magnetically Stored Energy Calculation

  • Baik, Seung-Kyu;Kwon, Young-Kil;Kim, Ho-Min;Lee, Jae-Deuk;Kim, Yeong-Chun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.2
    • /
    • pp.13-16
    • /
    • 2010
  • The superconducting synchronous motor or generator mostly has high permeability iron only around outer yoke portion. Therefore, if excitation voltage (Back E.M.F) is calculated from 2 dimensional magnetic field distributions, it can be largely different from actual value due to additional voltage originated from end coils. In order to calculate the excitation voltage more accurately, 3 dimensional magnetic field calculation is necessary for including the end coil effect from large air-gap structure. The excitation voltage can be calculated by stator (armature) coil linkage flux originated from rotor (field) coil excitation, but it is difficult to calculate the flux linkage exactly because of complicated structure of the stator coil. This paper shows a method to calculate the excitation voltage from 3 dimensional magnetic energy that can be calculated directly from volume integration of magnetic flux density and field intensity scalar product through FEM (Finite Element Method) analysis software.

Modeling And Simulation of the Switching Time Calculation When Starts Asynchronous Motors using Matlab Software (비동기모터 기동시 Matlab을 이용한 스위칭시간 계산의 모델링 및 시뮬레이션)

  • Bae, Cherl-O;Vuong, Duc-Phuc
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.10a
    • /
    • pp.73-73
    • /
    • 2011
  • In fact, asynchronous motors are used widely. Asynchronous motors which have large power (compared to the source supplies) is needed to start them in various methods. The theory of application reduced voltage to motor's stator or variable resistor fed rotor for the purpose of altering the motor's torque and power consumption characteristics is an idea that has existed for many years. These concepts have flourished mainly due to the need to limit torque and limited generator/power distribution capabilities. However, how can know exactly the time of switching steps with different types of motors as well as load characteristics is very difficult. This paper focuses on the design and development mathematical models of motor[1][2], load, ACB, asynchronous machine and then is implemented in SIMULINK in order to calculate this time, special on ships where power generation station is limited. The simulation results are both compared and discussed in detail so that it can apply to conclude the most suitable and applicable starting time for new system with various motors and load.

  • PDF

A Study of a Novel Wind Turbine Concept with Power Split Gearbox

  • Liu, Qian;Appunn, Rudiger;Hameyer, Kay
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.4
    • /
    • pp.478-485
    • /
    • 2013
  • This paper focuses on the design and control of a new concept for wind turbines with a planetary gearbox to realize a power split. This concept, where the generated wind power is split into two parts, is to increase the utilization of the wind power and may be particularly suitable for large scale off-shore wind turbines. In order to reduce the cost of the power electronic devices, a synchronous generator, which is driven by the planetary gear, is directly connected to the power grid without electronic converter. A servo drive, which functions as the control actuator, is connected to the power grid by a power electronic converter. With small scale power electronic device, the current harmonics can also be reduced. The speed of the main shaft is controlled to track the optimal tip speed ratio. Meanwhile the speed of the synchronous generator is controlled to stay at the synchronous speed. The minimum rated power of the servo motor and the converter, is studied and discussed in this paper. Different variants of the wind turbine with a planetary gear are also compared. The controller for optimal tip speed ratio and synchronous speed tracking is given.

Small Wind Turbine Installed at the University Building Rooftop for Green Energy Utillization (그린에너지 활용을 위한 대학건물 옥상설치형 소형풍력발전)

  • Lee, You Suck;Kim, Jae Yong
    • New & Renewable Energy
    • /
    • v.10 no.3
    • /
    • pp.14-21
    • /
    • 2014
  • As the world supply of fossil fuel sources decreases, the need for efficient energy consevation and develping green energy technologies becomes critical. Because of the high cost of the foundation for large turbines and optional high wind speed (over 12 m/s), it is very difficult to be located at inland city. For the solution above mentioned problem, we have been experimented about that not only using the adaption of wind power system on buildings for improving turbine efficiency, but also applying a wound rotor type induction generator for a small wind turbine.In this research, we try to find out the wind direction and wind speed those were measured every 1 min., during operation period, using the anemometers which consist of horizontally spinning cups on a vertical post. Performance testing for small wind turbine generating system was carried out by using the induction motor and invertor. Finally, we measured the power of 1 kW wind turbine system with the clamp meter and a voltmeter.

Current Measurement and Velocity Spatial Distribution of Deep Ocean Engineering Basin

  • Jung, Sung-Jun;Jung, Jae-Sang;Lee, Yong-Guk;Park, Byeong-Won;Hwang, Sung-Chul;Park, In-Bo;Kim, Jin-Ha;Park, Il-Ryong
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.150-160
    • /
    • 2021
  • To ensure the international competitiveness of the domestic offshore plant industry, a consensus has been formed regarding the requirement for large offshore basins for performing offshore plant performance verification. Accordingly, the Korea Research Institute of Ships & Ocean Engineering has built the world's largest deep ocean engineering basin (DOEB). The purpose of this study is to evaluate the characteristics of velocity distribution under various conditions of the DOEB. An independent measuring jig is designed and manufactured to measure the current velocities of many locations within a short time. The measurement jig is a 15-m-high triangular-truss structure, and the measurement sensors can move 15 m vertically through an electric motor-wire device. The current speed is measured under various impeller revolutions per minute and locations of the DOEB using the jig. The spatial distribution characteristics of the current velocity in the DOEB and the performance of the current generator are analyzed. The maximum speed is 0.56 m/s in the center of the DOEB water surface, thereby confirming sufficient current velocity distribution uniformity for model testing.

Fluid-Oscillation Coupled Analysis for HAWT Rotor Blade (One Degree of Freedom Weak Coupling Analysis with Hinge-Spring Model)

  • Imamura, Hiroshi;Hasegawa, Yutaka;Murata, Junsuke;Chihara, Sho;Takezaki, Daisuke;Kamiya, Naotsugu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.3
    • /
    • pp.197-205
    • /
    • 2009
  • Since large-scale commercial wind turbine generator systems such as MW-class wind turbines are becoming widely operated, the vibration and distortion of the blade are becoming larger and larger. Therefore the soft structure design instead of the solid-design is one of the important concepts to reduce the structural load and the cost of the wind turbine rotors. The objectives of the study are development of the fluid-structure coupled analysis code and evaluation of soft rotor-blade design to reduce the unsteady structural blade load. In this paper, fluid-structure coupled analysis for the HAWT rotor blade is performed by free wake panel method coupled with hinge-spring blade model for the flapwise blade motion. In the model, the continuous deflection of the rotor blade is represented by flapping angle of the hinge with one degree of freedom. The calculation results are evaluated by comparison with the database of the NREL unsteady aerodynamic experiment. In the analysis the unsteady flapwise moments in yawed inflow conditions are compared for the blades with different flapwise eigen frequencies.