• 제목/요약/키워드: large magnetic gradient

검색결과 33건 처리시간 0.029초

Development of novel magnetic filter for paramagnetic particles in high gradient magnetic separation

  • Nishijima, Shigehiro;Nomura, Naoki
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제24권3호
    • /
    • pp.7-11
    • /
    • 2022
  • We are conducting research and development of magnetic filters for magnetic separation targeting paramagnetic materials. In order to develop a new magnetic filter with a large magnetic gradient, stainless fiber (SUS430, 120 mm × 3 mm) with a triangular cross section was sintered with a high void ratio (~ 70%) and the magnetic filter (20 mm × 2 mm) was created. When this magnetic filter was used to perform magnetic separation of hematite (particle size 50 ㎛) under a maximum magnetic flux density of 1.49 T, high separation rates were obtained.

다중채널 고온초전도 양자간섭소자 자력계 시스템을 이용한 이동 물체 탐지 (Detection of a Moving Object by Multi-channel SQUID Magnetometer System)

  • 이헌주;이승민;이호년;윤주환;문승현;임선호;김덕영;오병두
    • Progress in Superconductivity
    • /
    • 제3권1호
    • /
    • pp.56-59
    • /
    • 2001
  • We have constructed a multi-channel SQUID magnetometer system for localization and classification of magnetic targets. Ten SQUID magnetometers were arranged to measure 5 independent components of 3 $\times$ 3 magnetic field gradient tensor. To get gradient from the difference of magnetic field measurements, we carefully balanced magnetometers. SQUIDs with slotted washer were used for operation in an unshielded laboratory environment, and noise characteristic in the laboratory was measured. With the multi-channel SQUID magnetometer system, we have successfully traced the motion of a bar magnet moving around it at a distance of about 1 m. In the urban environment, the drift of uniform magnetic field due to the irregular motion of a large magnetic body at distance and earth field causes an error in the position calculation, and this results in the distortion of the calculated trajectory. In this paper, we present the architecture and the performance of the system.

  • PDF

Field gradient calculation of HTS double-pancake coils considering the slanted turns and the splice

  • Baek, Geonwoo;Kim, Jinsub;Lee, Woo Seung;Song, Seunghyun;Lee, Onyou;Kang, Hyoungku;Ko, Tae Kuk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제19권1호
    • /
    • pp.51-55
    • /
    • 2017
  • To obtain Nuclear Magnetic Resonance (NMR) measurement of membrane protein, an NMR magnet is required to generate high intensity, homogeneity, and stability of field. A High-Temperature Superconducting (HTS) magnet is a promising alternative to a conventional Low-Temperature Superconducting (LTS) NMR magnet for high field, current density, and stability margin. Conventionally, an HTS coil has been wound by several winding techniques such as Single-Pancake (SP), Double-Pancake (DP), and layer-wound. The DP winding technique has been frequently used for a large magnet because long HTS wire is generally difficult to manufacture, and maintenance of magnet is convenient. However, magnetic field generated by the slanted turns and the splice leads to field inhomogeneity in Diameter of Spherical Volume (DSV). The field inhomogeneity degrades performance of NMR spectrometer and thus effect of the slanted turns and the splice should be analyzed. In this paper, field gradient of HTS double-pancake coils considering the slanted turns and the splice was calculated using Biot-Savart law and numerical integration. The calculation results showed that magnetic field produced by the slanted turns and the splice caused significant inhomogeneity of field.

Self-Diffusion of Hydrophobically End-Capped Polyethylene Oxide Urethane Resin by Using Pulsed-Gradient Spin Echo NMR Spetroscopy

  • Park, Jinwoo;Daewon Sohn;Lee, Youngil;Chaejoon Cheong
    • Macromolecular Research
    • /
    • 제11권6호
    • /
    • pp.444-450
    • /
    • 2003
  • Hydrophobically End-capped polyethylene oxide Urethane Resin(HEUR)-associating polymers, HEUR 35(8), HEUR 35(12), and HEUR 35(18), comprise a polyethylene oxide (PEO) having a molecular weight of 35,000 that is end capped with two C$\_$8/H$\_$17/, C$\_$12/H$\_$25/, and C$\_$18/H$\_$37/ alkyl chains, respectively. These associating polymers were synthesized by condensation reactions with polyethylene oxides and alkyl isocyanates. The self-diffusion coefficients of HEUR-associating polymers were measured in aqueous solution by pulsed-gradient spin-echo (PGSE) nuclear magnetic resonance (NMR) spectroscopy. All polymers underwent a decrease in their mean diffusion coefficients as the concentration was increased. However, the dispersion of the diffusion coefficients, ${\beta}$, about the mean fluctuated with changes in concentration. The large dispersion at low concentrations of HEUR 35(8) and HEUR 35(12) is related to the interaction between hydrophobic end groups, and the large dispersion at high concentrations of HEUR 35(18) is correlated with transient network formation. These results are valuable for predicting the associating mechanism of the large aggregates before and after their critical micelle concentration.

제철 폐수의 고구배 자기분리HGMS(High Gradient Magnetic Seperation) 처리에 관한 연구 (Study on the Purification of Wastewater by Superconducting HGMS for Steelmaking Industry)

  • 김태형;하동우;오상수;하태욱;김영훈;강채훈
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.360-360
    • /
    • 2008
  • Steelmaking industry is widely known to use a lot of water and same amount of wastewater is generated. Although toxicity of wastewater from Steelmaking industry is low, it contains an amount of various organic materials and Fe-Oxides. It is important to recycle the wastewater because of water shortages and water pollution. In general, large-scale equipment is necessary to process the wastewater. On the other hand, superconducting high gradient magnetic separation (HGMS) system can process the wastewater in the small space. Superconducting HGMS system that had a purpose to purify the wastewater was assembled. Cryo-cooled Nb-Ti superconducting magnet was used for magnetic separator. This system can operate continuously because contaminated filters can keep on returning after cleaning. The various magnetic seeding reactions were investigated to increase the reactivity of coagulation. Filter cleaning system was developed to decrease the quantity of clean water. This research was supported by a grant from Korea Electrotechnology Research Institute, Republic of Korea.

  • PDF

해양 자력구배 탐사자료를 이용한 UXO 탐지 (Detection of unexploded ordnance (UXO) using marine magnetic gradiometer data)

  • Salem Ahmed;Hamada Toshio;Asahina Joseph Kiyoshi;Ushijima Keisuke
    • 지구물리와물리탐사
    • /
    • 제8권1호
    • /
    • pp.97-103
    • /
    • 2005
  • 여러 센서들의 배열을 이용한 최근의 해양 자력구배 측정시스템의 개발을 통하여 넓은 오염지역의 조사를 빠르게 수행할 수 있게 되었다. 그러나 물밑의 UXO 는 조류에 의해 이동할 수 있으며 따라서 이런 환경에서의 복원과정은 정적이라기 보다는 동적이 되었다. 이는 곧 성공적인 복원을 위해서는 탐지가 거의 실시간으로 이루어져야 함을 말한다. 그러므로 해양 자력탐사자료로부터 물밑 물체의 신호를 빠르게 탐지할 수 있는 신속한 해석법이 필요하다. 이 논문에서는 물밑 UXO 의 위치 및 특성을 알아내는 신속한 방법을 소개하였다. 먼저 대상체의 정밀 탐지를 위해 자력구배자료의 해석기법(해석적 신호와 Euler 방법)을 이용하며, 반복적 선형 최소자승법을 이용해 대상체의 자기 특성을 얻어낸다. 이 방법은 알고 있는 대상체에 대해 무작위 잡음을 더한 이론적 해양 자력이상에 적용되었으며, 일본의 해양 자력구배탐사 자료를 이용하여 실질적인 유용성을 예시하였다.

The treatment of coolant wastewater of rolling plate process by High Gradient Magnetic Separation

  • Kim, Tae-Hyung;Ha, Dong-Woo;Kwon, Jun-Mo;Sohn, Myung-Hwan;Baik, Seung-Kyu;Oh, Sang-Soo;Ko, Rock-Kil;Kim, Ho-Sup;Kim, Young-Hun;Park, Seong-Kuk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제11권4호
    • /
    • pp.8-11
    • /
    • 2009
  • This study introduced wastewater treatment method by High Gradient Magnetic Separation (HGMS). HGMS treatment was high efficient method for various industrial wastewaters. The system is currently research state, but we have surveyed commercialize the technology for industry. In rolling plate process, coolant wastewater was recycled by sedimentation and sand filter system. It needs several large reservoirs and long time to remove suspended solid (SS) like metal fines and iron oxide in hot rolling plate making process. If removing rate of suspended solid in rolling coolant wastewater is improved by using HGMS system, the productivity of working process can be increased and the area of reservoir can be reduced. We manufactured high temperature superconducting HGMS system that had a purpose to treatment of coolant wastewater in rolling plate process. We fabricated the prototypes of magnetic matrix filter consisting of stainless steel 430 mesh, which is a core component in the magnetic separation system, In our basic preliminary experiment using HGMS system, it has been clear that the fine paramagnetic particles in the coolant wastewater obtained from rolling plate process of POSCO can be separated with high efficiency.

산업폐수의 수처리를 위한 초전도 자기분리 장치 제작 (Superconducting Magnetic Separator for Purification of Industrial Wastewater)

  • 하동우;권준모;고락길;백승규;손명환;이유진;김태형
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.44-44
    • /
    • 2010
  • Conventional water treatment facilities like precipitation process need large-scale equipment and wide space to purify the wastewater of paper factory. In case of massive waste water, high gradient magnetic separation (HGMS) parts are more effective to purify it rapidly and to occupy relatively small space, since large voids at filter with HGMS are adopted. Cryo-cooled Nb-Ti superconducting magnet with room temperature bore in diameter of 100 mm and 600 mm in height was used for magnetic separator. Magnetic filters were designed by the analysis of magnetic field distribution at superconducting magnets.

  • PDF

Removal of sulfur element from high-sulfur coal by superconducting HGMS technology

  • Han, Shuai-shuai;Li, Su-qin;Yang, Rui-ming;Yang, Chang-qiao;Xing, Yi
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제21권2호
    • /
    • pp.26-30
    • /
    • 2019
  • Coal is the most abundant fossil fuel on Earth and is used in a wide range of applications. The direct combustion of high-sulfur coal produces a large amount of sulfur dioxide, which is a toxic and corrosive gas. A new superconducting high gradient magnetic separation (HGMS) technology was studied to remove sulfur from high sulfur coal. The magnetic separation concentrate was obtained under the optimum parameters, such as a particle size of -200 mesh, a magnetic field strength of 2.0 T, a slurry concentration of 15 g/L, and a slurry flow rate of 600 ml/min. The removal rate of sulfur is up to 59.9%. The method uses a magnetic field to remove sulfur-containing magnetic material from a pulverized coal solution. It is simple process with, high efficiency, and is a new way.