• Title/Summary/Keyword: large ionic molecule

Search Result 7, Processing Time 0.02 seconds

Study of Transport Phenomena of Large Ionic - Molecules Inside Polymeric Gel (고분자젤 내에서 분자체 거동현상 연구)

  • Park, Young-G.;Sung, Ki-Chun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.1-6
    • /
    • 2001
  • Theoretical model has been studied for the transport phenomena of molecules in the system where an electric potential is applied to the system in the axial direction. The effect of electrophoretic convection in the polymeric media is significantly contributed to separate large ionic-molecules because the conformation of large ionic-molecule quickly orients in the field direction. The dependence of the transport in the polymeric media upon field intensity and molecular size aids in understanding the transport of large ionic-molecule in the system, since the convective velocity of large ionic-molecule is accelerated inside a porous material. The transport distance of individual large ionic-molecule can be predicted using the reptation theories.

Study on the separation of large ionic-molecules by electrofiltration (전기여과에 의한 거대이온성 분자체 분리현상연구)

  • Park Young-Gyu
    • Journal of the Korean Electrochemical Society
    • /
    • v.1 no.1
    • /
    • pp.18-23
    • /
    • 1998
  • Theoretical model has been derived in the electrophoretic separation system where an electric potential is applied to the system in the axial direction. The effect of electrophoretic convection in the polymeric media is significantly contributed to separate large ionic-molecules because the conformation of large ionic-molecule quickly orients in the field direction. The dependence of the transport in the polymeric media upon field intensity and molecular size aids in understanding the transport of large ionic-molecule in the system, since the convective velocity of large ionic-molecule is accelerated inside a porous material. The separation of two different large ionic-molecules is predicted with a value of $(Pe_t/Pe_g)$ of individual large ionic-molecule using an operator and the reptation theories.

Electronic and Magnetic Structure Calculations of Cubane-type Co4 Magnetic Molecule (Cubane 구조를 가진 Co4 분자자성체의 전자구조 및 자기구조계산)

  • Park, Key Taeck
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.4
    • /
    • pp.140-144
    • /
    • 2017
  • We have studied electronic and magnetic structure of cubane-type Co magnetic molecule using density functional method. The calculated density of states show $Co^{+2}$ ionic state and high-spin state because of large exchange interaction between inside Co 3d electrons. The exchange interaction J between Co atoms depends Co-O-Co angle. The calculated J is ferromagnetic with right angles. On the other hand J is antiferromagnetic with large angles since super-exchange interactions between $Co^{+2}$ atoms. It induces that Co cubane has a antiferromagnetic spin structure of AFM1 = [${\uparrow}{\uparrow}{\downarrow}{\downarrow}$]

Molecular Orbital Studies on the Reaction Path and Reactivity of $S_N2$ Reactions. Determination of Reactivity by MO Theory (Part 69) (SN2 반응의 반응경로 및 반응성에 관한 분자궤도함수 이론적 연구)

  • Lee, Ik Choon;Cho, Jeoung Ki;Lee, Hae Hwang;O, Hyeok Geun
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.239-247
    • /
    • 1990
  • The gas-phase S_N2$ reactions can be classified into neutral bimolecular, solvated, and ionic reactions; the neutral bimolecular reaction proceeds via retention mechanism whereas the ionic reaction produces inversion products. In the reaction of solvated nucleophile with one solvent molecule, a six-center transition state (TS) is formed and the two processes i.e., retention and inversion, are found to compete with a favored path depending on the electronic effect of the nucleophile and substituents in the substrate and on the steric requirement. In the ionic reaction, the difference in the energy barrier between the two processes reduces to a small value when the substrate methyl group is made bulky, leaving ability of the leaving group is improved and at the same time the negative charge of the nucleophile is dispersed. When the reaction center atom in the $S_N2$ reaction is changed to a larger sized second row elements, the activation barrier decreases since the steric crowding in the penta-coordinated TS is relieved. However within the same row, the barrier was found to increase as the atomic size decreased. For the boron, B, the barrier height was the least since in addition to the relatively large atomic size compared to C and N, it forms tetra-coordinated TS so that the steric crowding becomes nearly negligible.

  • PDF

Synthesis and Crystal Structure of Zinc Iodide in the Sodalite Cavities of Zeolite A (LTA)

  • Kim, Seok-Han;Park, Man;Son, Young-Ja;Lee, Hyung-Joo;Jeong, Gyo-Cheol;Bae, Myung-Nam;Lim, Woo-Taik
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.567-573
    • /
    • 2007
  • The crystal structure of ZnI2 molecule synthesized in zeolite A (LTA) has been studied by single-crystal X-ray diffraction techniques. A single crystal of |Zn6|[Si12Al12O48]-LTA, synthesized by the dynamic ion-exchange of |Na12|[Si12Al12O48]-LTA with aqueous 0.05 M Zn(NO3)2 and washed with deionized water, was placed in a stream of flowing 0.05 M KI in CH3OH at 294 K for four days. The resulting crystal structure of the product (|K6Zn3(KI)3(ZnI2)0.5|[Si12Al12O48]-LTA, a = 12.1690(10) A) was determined at 294 K by single-crystal X-ray diffraction in the space group Pm3m. It was refined with all measured reflections to the final error index R1 = 0.078 for 431 reflections which Fo > 4σ (Fo). At four crystallographically distinct positions, 3.5 Zn2+ and nine K+ ions per unit cell are found: three Zn2+ and five K+ ions lie on the 3-fold axes opposite 6-rings in the large cavity, two K+ ions are off the plane of the 8-rings, two K+ ions are recessed deeply off the plane of the 8-rings, and the remaining a half Zn2+ ion lie on the 3-fold axes opposite 6-rings in the sodalite cavity. A half Zn2+ ion and an I- ion per unit cell are found in the sodalite units, indicating the formation of a ZnI2 molecule in 50% of the sodalite cavities. Each ZnI2 (Zn-I = 3.35(5) A) is held in place by the coordination of its one Zn2+ ion to the zeolite framework oxygens and by the coordination of its two I- ions to K+ ions through 6-rings (I-K = 3.33(8) A). Three additional I- ions per unit cell are found opposite a 4-ring in the large cavity and form a K3I2+ and two K2ZnI3+ ionic clusters, respectively.

Crystal Structure of a Highly Thermostable α-Carbonic Anhydrase from Persephonella marina EX-H1

  • Kim, Subin;Sung, Jongmin;Yeon, Jungyoon;Choi, Seung Hun;Jin, Mi Sun
    • Molecules and Cells
    • /
    • v.42 no.6
    • /
    • pp.460-469
    • /
    • 2019
  • Bacterial ${\alpha}-type$ carbonic anhydrase (${\alpha}-CA$) is a zinc metalloenzyme that catalyzes the reversible and extremely rapid interconversion of carbon dioxide to bicarbonate. In this study, we report the first crystal structure of a hyperthermostable ${\alpha}-CA$ from Persephonella marina EX-H1 (pmCA) in the absence and presence of competitive inhibitor, acetazolamide. The structure reveals a compactly folded pmCA homodimer in which each monomer consists of a 10-stranded ${\beta}-sheet$ in the center. The catalytic zinc ion is coordinated by three highly conserved histidine residues with an exchangeable fourth ligand (a water molecule, a bicarbonate anion, or the sulfonamide group of acetazolamide). Together with an intramolecular disulfide bond, extensive interfacial networks of hydrogen bonds, ionic and hydrophobic interactions stabilize the dimeric structure and are likely responsible for the high thermal stability. We also identified novel binding sites for calcium ions at the crystallographic interface, which serve as molecular glue linking negatively charged and otherwise repulsive surfaces. Furthermore, this large negatively charged patch appears to further increase the thermostability at alkaline pH range via favorable charge-charge interactions between pmCA and solvent molecules. These findings may assist development of novel ${\alpha}-CAs$ with improved thermal and/or alkaline stability for applications such as $CO_2$ capture and sequestration.

An Efficient Method to Compute Partial Atomic Charges of Large Molecules Using Reassociation of Fragments

  • Lee, Jung-Goo;Jeong, Ho-Young;Lee, Ho-Sull
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.369-376
    • /
    • 2003
  • Coulson (ZINDO), Mulliken $(MP2/6-31G^*)$ and Natural $(MP2/6-31G^*)$ population analyses of several large molecules were performed by the Fragment Reassociation (FR) method. The agreement between the conventional ZINDO (or conventional MP2) and FR-ZINDO (or FR-MP2) charges of these molecules was excellent. The standard deviations of the FR-ZINDO net atomic charges from the conventional ZINDO net atomic charges were 0.0008 for $C_{10}H_{22}$ (32 atoms), 0.0012 for $NH_2-C_{16}O_2H_{28}-COOH$ (53 atoms), 0.0014 for $NH_3^+-C_{16}O_2H_{28}-COOH$ (54 atoms), 0.0017 for $NH_2-C_{16}O_2H_{28}-COO^-$ (52 atoms), 0.0019 for $NH_3^+-C_{16}O_2H_{28}-COO^-$ (53 atoms), 0.0024 for a conjugated model $(O=CH-(CH=CH)_{15}-C=O-(CH=CH)_{12}-CH=CH_2)$, 118 atoms), 0.0038 for aglycoristocetin $(C_{60}N_7O_{19}H_{52}^+$, 138 atoms), 0.0023 for a polypropylene model complexed with a zirconocene catalyst $(C_{68}H-{121}Zr^+$, 190 atoms) and 0.0013 for magainin $(C_{112}N_{29}O_{28}SH_{177}$, 347 atoms), respectively. The standard deviations of the FR-MP2 Mulliken (or Natural) partial atomic charges from the conventional ones were 0.0016 (or 0.0016) for $C_{10}H_{22}$, 0.0019 (or 0.0018) for $NH_2-C_{16}O_2H_{28}-COOH$ and 0.0033 (or 0.0023) for $NH_3^+-C_{16}O_2H_{28}-COO^-$, respectively. These errors were attributed to the shape of molecules, the choice of fragments and the degree of ionic characters of molecules as well as the choice of methods. The CPU time of aglycoristocetin, conjugated model, polypropylene model complexed with zirconocene and magainin computed by the FR-ZINDO method was respectively 2, 4, 6 and 21 times faster than that by the normal ZINDO method. The CPU time of $NH_2-C_{16}O_2H_{28}-COOH\;and\;NH_3^+-C_{16}O_2H_{28}-COO^-$ computed by the FR-MP2 method was, respectively, 6 and 20 times faster than that by the normal MP2 method. The largest molecule calculated by the FR-ZINDO method was B-DNA (766 atoms). These results will enable us to compute atomic charges of huge molecules near future.