• Title/Summary/Keyword: large grains

Search Result 421, Processing Time 0.03 seconds

An Investigation of Sliding Wear and Microstructural Evolution of Ultra-Fine Grained Pure Al Fabricated by ARB Process (누적압연접합(Accumulative Roll-Bonding, ARB)에 의한 Al의 결정립 미세화와 마모 특성 연구)

  • Park K.S.;Lee T.O.;Kim Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.21-24
    • /
    • 2000
  • Ultra-fine grains were produced in pure Al using an Accumulative Rolling-Bonding (ARB) process. After several cycles of the ARB process, pure Al sheets were filled with the ultra-fine grains whose diameters were several hundred nano-meters. With ARB cycles, the nature of grain boundaries of the ultra-fine grains changed from diffusive sub-boundaries to well-defined high angle boundaries. After 7 cycles, ultra-fine polycrystals with large misorientations between neighboring grains were obtained. Sliding wear tests using a pin-on-disk type wear tester were co ducted on the ultra-fine grained pure Al. Wear rates of pure Al increased with the increase of ARB cycle numbers in spite of the increase in hardness. Worn surfaces and cross-sections were examined with optical microscopy (OM) and scanning electron microscopy (SEM) In investigate the wear mechanism of the ultra-fine grained pure Al.

  • PDF

Microstructure Development of Spark Plasma Sintered Silicon Carbide with Al-B-C (Al-B-C 첨가 탄화규소의 스파크 플라즈마 소결에 의한 미세구조 발달)

  • Cho, Kyeong-Sik;Lee, Kwang-Soon;Lee, Hyun-Kwuon;Lee, Sang-Jin;Choi, Heon-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.8 s.279
    • /
    • pp.567-574
    • /
    • 2005
  • Densification of SiC powder with additives of total amount of2, 4, 8 $wt\%$ Al-B-C was carried out by Spark Plasma Sintering (SPS). The unique features of the process are the possibilities of a very fast heating rate and a short holding time to obtain fully dense materials. The heating rate and applied pressure were kept at $100^{\circ}C/min$ and 40 MPa, while the sintering temperature and holding time varied from 1700 - $1800^{\circ}C$ for 10 - 40 min, respectively. The SPS-sintered specimens with different amount of Al-B-C at $1800^{\circ}C$ reached near-theoretical density. The $3C{\rightarrow}6H,\;15R{\rightarrow}4H$ phase transformation of SiC was enhanced by increasing the additive amount. The microstructure of SiC sintered up to $1750^{\circ}C$ consisted of fine equiaxed grains. In contrast, the growth of large elongated grains in small matrix grains was shown in sintered bodies at $1800^{\circ}C$, and the plate-like grains interlocking microstructure had been developed by increasing the holding time at $1800^{\circ}C$. The grain growth rate decreases with increasing amount of Al-B-C in SiC starting powder, however, the both of volume fraction and aspect ratio of large grains in sintered body increased.

Modeling Grain Rotational Disruption by Radiative Torques and Extinction of Active Galactic Nuclei

  • Giang, Nguyen Chau;Hoang, Thiem
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.66.1-66.1
    • /
    • 2021
  • Extinction curves observed toward individual Active Galactic Nuclei (AGN) usually show a steep rise toward Far-Ultraviolet (FUV) wavelengths and can be described by the Small Magellanic Cloud (SMC)-like dust model. This feature suggests the dominance of small dust grains of size a < 0.1 ㎛ in the local environment of AGN, but the origin of such small grains is unclear. In this paper, we aim to explain this observed feature by applying the RAdiative Torque Disruption (RATD) to model the extinction of AGN radiation from FUV to Mid-Infrared (MIR) wavelengths. We find that in the intense radiation field of AGN, large composite grains of size a > 0.1 ㎛ are significantly disrupted to smaller sizes by RATD up to dRATD > 100 pc in the polar direction and dRATD ~ 10 pc in the torus region. Consequently, optical-MIR extinction decreases, whereas FUV-near-Ultraviolet extinction increases, producing a steep far-UV rise extinction curve. The resulting total-to selective visual extinction ratio thus significantly drops to RV < 3.1 with decreasing distances to AGN center due to the enhancement of small grains. The dependence of RV with the efficiency of RATD will help us to study the dust properties in the AGN environment via photometric observations. In addition, we suggest that the combination of the strength between RATD and other dust destruction mechanisms that are responsible for destroying very small grains of a <0.05 ㎛ is the key for explaining the dichotomy observed "SMC" and "gray" extinction curve toward many AGN.

  • PDF

A Comparative Study of Fine Structure of Callus Cells in Panax ginseng (인삼(人蔘) Callus세포(細胞)의 미세구조적(微細構造的) 비교(比較) 연구(硏究))

  • Lee, Chai-Doo;Lee, Kyu-Bae
    • Applied Microscopy
    • /
    • v.8 no.1
    • /
    • pp.67-76
    • /
    • 1978
  • A comparative investigation of fine structure of callus cells derived from tissue culture of Panax ginseng was made by electron microscope. Callus was consisted of large superficial cells and small inner zone cells derived from shoot apex tissue cultured for 16 weeks. Large superficial cells were contained the clusters of starch grains surrounded by a double plastid membrane. Especially, electron dense particles were deposited just inside and outside of plastid membrane and also deposited on mitochondria-like and endoplasmic reticulum-like structures. Crystalline body was also found in superficial cells. Small inner zone cells were characterized by presence of proplastids sheathed by short endoplasmic reticulum profiles. presence of spiral configuration of ribosomes and absence of crystalline body. Organ primordia was consisted of a dense cytoplasm and notable nucleate cells derived from nodal tissue cultured for 67 weeks. Proplastids containing starch grains and crystalline bodies were frequently observed; starch grains are of small quantity and does not form the clusters as in inner zone cells; hexagonal crystalline body itself does not have always limiting membrane. Remarkably. in a few cells of primordia, particles resembling the presumptive virus were observed mainly in condensed nuclear chromatin and also in cytoplasm, in mitochondrion-like organelle.

  • PDF

Effect of SiC Particle Size on Microstructure of $Si_3N_4/SiC$ Nanocomposites ($Si_3N_4/SiC$ 초미립복합체의 미세조직에 미치는 SiC 입자크기의 영향)

  • 이창주;김득중
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.2
    • /
    • pp.152-157
    • /
    • 2000
  • Si3N4/SiC nanocomposite ceramics containing 5 wt%dispersed SiC particles were prepared by gas-pressure-sintering at 200$0^{\circ}C$ under nitrogen atmosphere. SiC particles with average sizes of 0.2 and 0.5${\mu}{\textrm}{m}$ were used, and the effect of the SiC particle size on the microstructure was investigated. The addition of SiC particles effectively suppressed the growth of the Si3N4 matrix grains. The effect of grain growth inhibition was higher in the nanocomposites dispersed with fine SiC. SiC particles were dispersed uniformly inside Si3N4 matrix grains and on grain boundaries. When the fine SiC particles were added, large fraction of the SiC particles was trapped inside the grains. On the other hand, when the large SiC particles were added, most of the SiC particles were located on grain boundaries. Typically, the fraction of SiC particles located at grain boundaries was higher in the specimen prepared from $\beta$-Si3N4 than in the specimen prepared from $\alpha$-Si3N4.

  • PDF

Low-temperature Epitaxial Growth of a Uniform Polycrystalline Si Film with Large Grains on SiO2 Substrate by Al-assisted Crystal Growth

  • Ahn, Kyung Min;Kang, Seung Mo;Moon, Seon Hong;Kwon, HyukSang;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.1 no.2
    • /
    • pp.103-108
    • /
    • 2013
  • Epitaxial growth of a high-quality thin Si film is essential for the application to low-cost thin-film Si solar cells. A polycrystalline Si film was grown on a $SiO_2$ substrate at $450^{\circ}C$ by a Al-assisted crystal growth process. For the purpose, a thin Al layer was deposited on the $SiO_2$ substrate for Al-assisted crystal growth. However, the epitaxial growth of Si film resulted in a rough surface with humps. Then, we introduced a thin amorphous Si seed layer on the Al film to minimize the initial roughness of Si film. With the help of the Si seed layer, the surface of the epitaxial Si film was smooth and the crystallinity of the Si film was much improved. The grain size of the $1.5-{\mu}m$-thick Si film was as large as 1 mm. The Al content in the Si film was 3.7% and the hole concentration was estimated to be $3{\times}10^{17}/cm^3$, which was one order of magnitude higher than desirable value for Si base layer. The results suggest that Al-doped Si layer could be use as a seed layer for additional epitaxial growth of intrinsic or boron-doped Si layer because the Al-doped Si layer has large grains.

Variarions in Degree of Chalkiness of Rice Kernels According to Their Positions on Panicle (광잎 심복백의 수상위치에 따른 변이)

  • 최상진
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.26 no.3
    • /
    • pp.233-238
    • /
    • 1981
  • This trial was conducted to find out some tendencies in variations of grain chalkiness according to their position on a panicle. To know the varietal character in variations of chalkiness and their relations with grain weight, distribution of chalkiness in bulk seed was observed for four varieties. Milyang 23, relatively clear variety and SR601-25-1, much chalky variety were checked for the grain chalkiness in their positions on the panicle. The results obtained are summerized as follows: Rice chalkinss were varied in degree from 0 (clear) to 9 (chalky) within a variety. Large number of grains were distributed to clear for clear variety and to chalky for chalky variety, but almost equal number of grains were distributed to all degree of chalkiness for intermediate chalky variety. For the relationship between degree of chalkiness and grain weight, chalky grains founded in clear variety and clear grains founded in chalky variety decreased in weight, while in intermediate chalky varieties both grains of clear and chalky decreased. There were great varietions in grain chalkiness on a panicle for both clear and chalky varieties. There was no definite trend in distribution of chalkiness except that the first primary branch and terminal grains in every primary branch showed clear in Milyang 23. Mean degree of grain chalkiness was relatively high in grains of middle part of panicle only from Milyang 23.

  • PDF

Influence of α-SiC Seed Addition on Spark Plasma Sintering of β-SiC with Al-B-C: Microstructural Development (Al-B-C 조제 β-SiC의 스파크 플라즈마 소결에 미치는 α-SiC seed 첨가 영향: 미세 구조 변화)

  • Cho, Kyeong-Sik;Lee, Hyun-Kwuon;Lee, Sang-Woo
    • Journal of Powder Materials
    • /
    • v.17 no.1
    • /
    • pp.13-22
    • /
    • 2010
  • The unique features of spark plasma sintering process are the possibilities of a very fast heating rate and a short holding time to obtain fully dense materials. $\beta$-SiC powder with 0, 2, 6, 10 wt% of $\alpha$-SiC particles (seeds) and 4 wt% of Al-B-C (sintering aids) were spark plasma sintered at $1700-1850^{\circ}C$ for 10 min. The heating rate, applied pressure and sintering atmosphere were kept at $100^{\circ}C/min$, 40 MPa and a flowing Ar gas (500 CC/min). Microstructural development of SiC as function of seed content and temperature during spark plasma sintering was investigated quantitatively and statistically using image analysis. Quantitative image analyses on the sintered SiC ceramics were conducted on the grain size, aspect ratio and grain size distribution of SiC. The microstructure of SiC sintered up to $1700^{\circ}C$ consisted of equiaxed grains. In contrast, the growth of large elongated SiC grains in small matrix grains was shown in sintered bodies at $1750^{\circ}C$ and the plate-like grains interlocking microstructure had been developed by increasing sintering temperature. The introduction of $\alpha$-SiC seeds into $\beta$-SiC accelerated the grain growth of elongated grains during sintering, resulting in the plate-like grains interlocking microstructure. In the $\alpha$-SiC seeds added in $\beta$-SiC, the rate of grain growth decreased with $\alpha$-SiC seed content, however, bulk density and aspect ratio of grains in sintered body increased.

Single-Domain-Like Graphene with ZnO-Stitching by Defect-Selective Atomic Layer Deposition

  • Kim, Hong-Beom;Park, Gyeong-Seon;Nguyen, Van Long;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.329-329
    • /
    • 2016
  • Large-area graphene films produced by means of chemical vapor deposition (CVD) are polycrystalline and thus contain numerous grain boundaries that can greatly degrade their performance and produce inhomogeneous properties. A better grain boundary engineering in CVD graphene is essential to realize the full potential of graphene in large-scale applications. Here, we report a defect-selective atomic layer deposition (ALD) for stitching grain boundaries of CVD graphene with ZnO so as to increase the connectivity between grains. In the present ALD process, ZnO with hexagonal wurtzite structure was selectively grown mainly on the defect-rich grain boundaries to produce ZnO-stitched CVD graphene with well-connected grains. For the CVD graphene film after ZnO stitching, the inter-grain mobility is notably improved with only a little change in free carrier density. We also demonstrate how ZnO-stitched CVD graphene can be successfully integrated into wafer-scale arrays of top-gated field effect transistors on 4-inch Si and polymer substrates, revealing remarkable device-to-device uniformity.

  • PDF

Formation of ultrafine Grains in the Al 5083 Alloy by Cryogenic Rolling Process (극저온 압연에 의한 초세립 Al 5083 Alloy 제조)

  • 이영범;심혜정;남원종
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.163-167
    • /
    • 2003
  • The large deformation at cryogenic temperature would be one of the effective methods to produce large bulk UFG materials. The effects of annealing temperature 150∼300$^{\circ}C$, on microstructure and mechanical properties of the sheets received 85% reduction at cryogenic temperature were investigated. In comparison with those at room temperature. Annealing of 5083 Al alloy deformed 85%, at 200$^{\circ}C$ for an hour, results in the considerable increase of tensile elongation without the great loss of strength and the occurrence of equiaxed grains less than 300nm in diameter.

  • PDF