• Title/Summary/Keyword: large eddy simulation

Search Result 525, Processing Time 0.025 seconds

LARGE EDDY SIMULATION OF THE FLOW AROUND A SPHERE WITH UNSTRUCTURED MESH (비정렬 격자를 이용한 구 주위의 큰에디 모사)

  • Lee, K.S.;Baek, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.41-44
    • /
    • 2007
  • A large eddy simulation method with unstructured mesh is presented. Two explicit filtering procedures are adopted for reducing the aliasing error of the nonlinear convective term and measuring the level of subgrid scale velocity fluctuation, respectively. The developed subgrid scale model is basically an eddy viscosity model which depends on both local velocity fluctuation level and local grid scale. As a validation problem, the flows around a sphere of several Reynolds numbers are simulated and some characteristic quantities are compared to experimental data and numerical results in the literature.

  • PDF

Improvement on Large-Eddy Simulation Technique of Turbulent Flow (난류유동의 Large-Eddy Simulation 기법의 알고리즘 향상에 관한 연구)

  • 앙경수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1691-1701
    • /
    • 1995
  • Two aspects of Large-Eddy Simulation(LES) are investigated in order to improve its performance. The first one is on how to determine the model coefficient in conjunction with a dynamic subgrid-scale model, and the second one is on a wall-layer model(WLM) which allows one to skip near-wall regions to save a large number of grid points otherwise required. Especially, a WLM suitable for a separated flow is considered. Firstly, an averaging technique to calculate the model coefficient of dynamic subgrid-scale modeling(DSGSM) is introduced. The technique is based on the concept of local averaging, and useful to stabilize numerical solution in conjunction with LES of complex turbulent flows using DSGSM. It is relatively simple to implement, and takes very low overhead in CPU time. It is also able to detect the region of negative model coefficient where the "backscattering" of turbulence energy occurs. Secondly, a wall-layer model based on a local turbulence intensity is considered. It locally determines wall-shear stresses depending on the local flow situations including separation, and yields better predictions in separated regions than the conventional WLM. The two techniques are tested for a turbulent obstacle flow, and show the direction of further improvements.rovements.

Large Eddy Simulation of Turbulent Flow in an Optimal Diffuser (큰에디모사법을 이용한 최적 디퓨져내의 난류유동 해석)

  • Lim Seokhyun;Caoi Haecheon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.811-814
    • /
    • 2002
  • Using a mathematical theory, we show that the optimality condition of a turbulent diffuser with maximum pressure recovery at the exit is zero shear stress along the wall. The optimal diffuser shape is designed through iterative procedures by using the $k-{\varepsilon}-{\nu}^{2}-f$ turbulence model for flow simulation. The Reynolds number based on the bulk mean velocity and the channel height at the diffuser entrance is 18,000. We also perform large eddy simulation to validate the shape design results and investigate the flow characteristics near the zero-skin friction wall. Results from large eddy simulation show that the skin friction is slightly higher than zero but is still very small as compared to that of the flat plate boundary layer flow Although the time-averaged wall shear stress is slightly above zero along the diffuser wall, instantaneous flow reversals occur intermittently. The streamwise mein velocity shows an asymptotic behavior of the half-power-law near the wall where the skin friction is close to zero.

  • PDF

Large eddy simulation of turbulent flows in a grooved channel (홈이 파진 평판 사이 난류유동의 대와동모사 (LES))

  • Yang, Gyeong-Su;Kim, Do-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.1
    • /
    • pp.34-49
    • /
    • 1998
  • In this study, turbulent flows in a grooved channel are numerically investigated by Large Eddy Simulation (LES). Especially, a parametric study is carried out to study effects of length and depth of a groove on large-scale flow structures. For one test case, comparison of LES results with those of DNS reveals a good agreement even though the number of grid points of LES is only 6.5% of that of DNS. This confirms that LES is a suitable tool for a parametric study of turbulent flows. The subsequent parametric study using LES shows that the large-scale turbulent structures are significantly affected by the geometry of the groove. Especially, when the length of the groove is short such that the recirculation region occupies the entire groove, the turbulent flow in the groove becomes very weak in both mean and fluctuation quantities.

A Study on Smoke Movement by Using Large Eddy Simulation I. Smoke Control Systems and Extraction Flowrate (대와류모사를 이용한 연기이동의 연구 I. 제연방식과 배기풍량)

  • 박외철
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.2
    • /
    • pp.40-45
    • /
    • 2003
  • To evaluate the smoke control systems, the large eddy simulation turbulence model based Fire Dynamics Simulate was applied to a 2m $\times$ 2m $\times$ 2.4m room with an opening. The smoke removal rate was investigated for three different smoke control systems: ventilation, extraction and pressurization. When the opening was closed, the smoke removal rates of the smoke control systems were almost the same as expected. The pressurization system showed a lower smoke removal rate compared with the other two smoke control systems for the room with the opening, and hence the pressurization system might not be efficient for a place with large openings. It was shown that the lower extraction flowrate is, the longer time the ventilation system requires to remove smoke. From these results, the ventilation system is recommended for subway stations where several large openings exist.

Large-Eddy Simulation based Eulerian PDF Approach for the Simulation of Scramjet Combustors (대와류모사 기법과 확률밀도함수를 이용한 스크램제트 연소부에서의 연소 현상 연구)

  • Koo, Heeseok
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.355-357
    • /
    • 2012
  • A probability density function (PDF) approach to account for turbulence-chemistry interaction in the context of large eddy simulation (LES) based simulation of scramjets is developed. To solve the high-dimensional joint-composition PDF transport equation robustly, the semi-discrete quadrature method of moments (SeQMOM) is recently proposed [1]. The SeQMOM approach addresses key numerical issues in LES related to the inaccuracies in computing filter-scale gradients, enabling an efficient and numerically consistent solution of the PDF transport equation. The computational tool is used to simulate a cavity-stabilized Mach 2.2 supersonic combustor.

  • PDF

Large Eddy Simulation of turbulent flow around a bluff body inside a sudden expansion cylindrical chamber (급 확대부를 갖는 실린더 챔버 내부의 둔각물체 주위 유동에 관한 대 와동 모사)

  • 최창용;고상철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.98-108
    • /
    • 2004
  • This study concerns a large eddy simulation (LES) of turbulent flow around a bluff body inside a sudden expansion cylindrical chamber, a configuration which resembles a premixed gas turbine combustor The simulation code is constructed by using the general coordinate system based on the physical contravariant velocity components. The Smagorinsky model is employed and the calculated Reynolds number is 5,000 based on the bulk velocity and the diameter of the inlet pipe. The combined grid technique and cylindrical grid are tested in the numerical simulation with complex geometry. The predicted turbulent statistics are evaluated by comparing with LDV measurement data. The numerical flow visualizations depict the behavior of turbulent mixing process behind the flame holder.

Unsteady Three-Dimensional Analysis of Transverse Fuel Injection into a Supersonic Crossflow using Detached Eddy Simulation Part I : Non-Reacting Flowfield (DES를 이용한 초음속 유동내 수직 연료분사 유동의 비정상 3차원 해석 Part I : 비반응 유동장)

  • Won, Su-Hee;Jeung, In-Seuck;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.9
    • /
    • pp.863-878
    • /
    • 2009
  • Unsteady three-dimensional flowfield generated by transverse fuel injection into a supersonic mainstream is simulated with a DES turbulence model. Comparisons are made with experimental results in terms of the temporal eddy position and eddy formation frequency. The vorticity field around the jet exit is also analyzed to understand the formation mechanism of the large eddy structures. Results indicate that the DES model correctly predicts the convection characteristics of the large scale eddies. However, it is also observed that the numerical results slightly over-predict the eddy formation frequency. The large eddy structures are generated as the counter-rotating vortices are detached alternately in the upstream recirculation region.

Large Eddy Simulation on Swirl Direction Effect of a Combustor with Seven Swirl Injectors (7개 스월 인젝터 연소기의 스월 방향에 따른 유동 특성 LES)

  • Yoo, Kwang-Hee;Kim, Jong-Chan;Sung, Hong-Gye;Yang, Vigor
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.14-17
    • /
    • 2010
  • To identify the turbulent flow characteristics resulted from the swirl direction of a combustor with seven swirl injectors, a 3D Large Eddy Simulation(LES) was implemented. The combustor of concern is the LRE combustor, designed by Aerospace Combustion Laboratory of Georgia Institute of Technology. The seven-clockwise-swirl-injectors combustor produces stronger flow interference among injectors, specially obvious tangential velocity near the wall, than the combustor with four-clockwise and three-counterclockwise swirl injectors. In addition, pressure fluctuations in the combustor with seven-clockwise-swirl-injectors was more amplified.

  • PDF

Large Eddy Simulation for the investigation of Roll Development Process in a Solid Rocket Motor (고체로켓 내부에서의 Roll 발생 현상 3D LES)

  • Kim, Jong-Chan;Hong, Ji-Seok;Yeom, Hyo-Won;Moon, Hee-Jang;Kim, Jin-Kon;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.253-257
    • /
    • 2011
  • Vortex generation mechanism by inhibitor in a solid rocket motor have been investigated by 3D Large Eddy Simulation turbulent model. Most of the result of the present study are in good agreement with experimental data and previous numerical calculation. Vortex generation and breakdown behind inhibitor are periodically observed between inhibitor and nozzle head by flow-acoustic coupling mechanism. Vortex generation frequency is the same as the second-mode frequency in the motor. The roll shape vortex generation behind inhibitor induces non-uniform flow field at the nozzle entrance and its throat.

  • PDF