• Title/Summary/Keyword: large eddy simulation

Search Result 525, Processing Time 0.027 seconds

Numerical simulation of turbulent flow around a building complex for development of risk assessment technique for windstorm hazards (강풍피해 위험성 평가를 위한 건물군 주위 유동해석)

  • Choi, Choon-Bum;Yang, Kyung-Soo;Lee, Sung-Su;Ham, Hee-Jung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2737-2742
    • /
    • 2007
  • Strong wind flow around a building complex was numerically studied by LES. The original motivation of this work stemmed from the efforts to develop a risk assessment technique for windstorm hazards. Lagrangian-averaged scale-invariant dynamic subgrid-scale model was used for turbulence modeling, and a log-law-based wall model was employed on all the solid surfaces including the ground and the surface of buildings to replace the no-slip condition. The shape of buildings was implemented on the Cartesian grid system by an immersed boundary method. Key flow quantities for the risk assessment such as mean and RMS values of pressure on the surface of the selected buildings are presented. In addition, characteristics of the velocity field at some selected locations vital to safety of human beings is also reported.

  • PDF

Flow and Noise Characteristics of NACA0018 by Large-Eddy Simulation (LES를 이용한 NACA0018 에어포일 주위의 유동 및 이산소음계산)

  • KIM, H.-J.;LEE, S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.433-438
    • /
    • 2002
  • The flow field around a symmetrical airfoil in a uniform flow under the generation of noise was numerically studied and compared with experimental datum. The numerical simulation was carried out by LES which employs a deductive dynamic model as subgrid-scale model. The result of an attack angle of $6^{\circ}$ indicate that the discrete frequency noise is generated when the separated laminar flow reattaches near the trailing edge of the pressure side and the turbulent boundary layer is formed over the suction side of the airfoil near the trailing edge. The periodic behavior of vortex formation was observed around the trailing edge and it persists further downstream in the wake. The frequency of the vortex formation in the wake was consistent with that of the discrete frequency noise.

  • PDF

Indoor Ventilation Efficiency Depending on Diffuser Inlet Angle (급기구 유입각도에 따른 실내 환기효율)

  • Jeon, Hyun-Jun;Jang, Yong-Jun;Yang, Kyung-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.5
    • /
    • pp.349-355
    • /
    • 2011
  • In this study, numerical simulation has been conducted to investigate dispersion of a pollutant released from a new furniture, a kind of Sick Building Syndrome (SBS). A sofa which generates formaldehyde is implemented by using an immersed boundary method. Large Eddy Simulation (LES) is employed to obtain time-dependent velocity and concentration fields. It is shown that the ventilation efficiency in this room can be improved by changing inlet angle of diffuser, even though other conditions still remain unchanged. Both active diffusion near a sofa and air flow pattern are important parameters to enhance the ventilation efficiency.

NUMERICAL STUDY OF THE FORMATION OF LINEAR DUNES

  • Zhang Ruyan;Kan Makiko;Kawamura Tetuya
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.31-38
    • /
    • 2005
  • Three-dimensional flow over the sand dunes have been studied numerically by using Large-Eddy Simulation (LES) method. In the direction of initial flow and span direction cyclic boundary conditions are imposed for velocity and pressure. The movement of the sand dune which is formed by converging wind direction has been investigated. The numerical method employed in this study can be divided into three parts: (i) calculation of the air flow over the sand dune using standard MAC method with a generalized coordinate system; (ii) estimation of the sand transfer caused by the flow through the friction; (iii) determination of the shape of the sand surface. Since the computational area has been changed due to step (iii), (i)-(iii) are repeated. The simulated dune, which has initially elliptic cross section, extends at the converging direction, which is known as linear dunes.

A Study on Discrete Frequency Noise from a Symmetrical Airfoil in a Uniform Flow (에어포일 이산소음 특성에 관한 연구)

  • Kim, H.J.;Lee, S.B.;Fujisawa, N.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.646-651
    • /
    • 2002
  • The flow field around a symmetrical airfoil in a uniform flow under the generation of noise was studied by experiments and numerical simulation. The experiments are conducted by visualizing the surface flow over the airfoil with a shear-sensitive liquid-crystal coating and by measuring the instantaneous velocity field around the trailing edge of the airfoil. The results indicate that the discrete frequency noise is generated when the separated laminar flow reattaches near the trailing edge of the pressure side and the turbulent boundary layer is formed over the suction side of the airfoil near the trailing edge. The periodic behavior of vortex formation was observed around the trailing edge and it persists further downstream in the wake. The frequency of the vortex formation in the wake was consistent with that of the discrete frequency noise.

  • PDF

Computer modeling of tornado forces on buildings

  • Selvam, R. Panneer;Millett, Paul C.
    • Wind and Structures
    • /
    • v.6 no.3
    • /
    • pp.209-220
    • /
    • 2003
  • A tornado changes its wind speed and direction rapidly; therefore, it is difficult to study the effects of a tornado on buildings in a wind tunnel. In this work, the status of the tornado-structure interaction is surveyed by numerical simulation. Various models of the tornado wind field found in literature are surveyed. Three-dimensional computer modeling work using the turbulence model based on large eddy simulation is presented. The effect of tornado on a cubic building is considered for this study. The Navier-Stokes (NS) equations are approximated by finite difference method, and solved by a semi-implicit procedure. The force coefficients are plotted in time to study the effect of the Rankine-Combined Vortex Model. Some flow visualizations are also reported to understand the flow behavior around the cube.

Numerical Study on the Formation of Tumble Motion in Engine Cylinder (엔진내부 텀블 유동 형성에 대한 수치해석적 연구)

  • Lee, Byoung-Seo;Lee, Joon-Sik;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2233-2238
    • /
    • 2003
  • It is well known that organized vortex rotations swirl and tumble greatly affect the mixing, the combustion and heat transfer processes in engine cylinder. We have developed 3 dimensional numerical simulation codes whose predictions make good agreement with the experimental data. Large eddy simulation based on Smagorinsky subgrid scale model was adopted to describe the turbulence of in-cylinder flows. The tumble motions generated by different inclination angles between valve-port and cylinder head have been calculated. The results show that the angles between direction of induced flow and cylinder walls which the flow collides with play a great role in the formation and generation of tumble motions. Therefore, it is inferred that seat angle and inclination angle are important factors of engine design. In addition, the numerical results of different engine speed -1000 rpm and 3000 rpm are very similar in the flow structure.

  • PDF

NUMERICAL ANALYSIS OF UNSTEADY FLOW FIELD AND AEROACOUSTIC NOISE OF AN AXIAL FLOW FAN (축류팬의 비정상 유동장 및 유동소음의 수치 해석)

  • Kim, Wook;Hur, Nahm-Keon;Jeon, Wan-Ho
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.60-66
    • /
    • 2010
  • Unsteady Reynolds Averaged Navier-Stokes(URANS) and Large Eddy Simulation(LES) simulation of an axial flow fan are calculated upon same conditions and computational grids in order to study aeroacoustic noise of an axial flow fan numerically. Results of computed performance and predicted noise are compared with those of measurement. Both performances show accurate results with a significant difference of less than 5%. However, noise of LES result is more close to measured noise qualitatively than URANS. Levels of tonal noises of both LES and URANS are quite similar with those of measured at BPF(Blade Passing Frequency) in sound spectrum. However, as leading edge separation and tip vortex shedding phenomena of LES are showed more clearly than those of URANS, sound level of broadband noise of LES corresponds better than that of URANS, especially.

Simulation of turbulent flow of turbine passage with uniform rotating velocity of guide vane

  • Wang, Wen-Quan;Yan, Yan
    • Coupled systems mechanics
    • /
    • v.7 no.4
    • /
    • pp.421-440
    • /
    • 2018
  • In this study, a computational method for wall shear stress combined with an implicit direct-forcing immersed boundary method is presented. Near the immersed boundaries, the sub-grid stress is determined by a wall model in which the wall shear stress is directly calculated from the Lagrangian force on the immersed boundary. A coupling mathematical model of the transition process for a model Francis turbine comprising turbulent flow and rotating rigid guide vanes is established. The spatiotemporal distributions of pressure, velocity, vorticity and turbulent quantity are gained with the transient process; the drag and lift coefficients as well as other forces (moments) are also obtained as functions of the attack angle. At the same time, analysis is conducted of the characteristics of pressure pulsation, velocity stripes and vortex structure at some key parts of flowing passage. The coupling relations among the turbulent flow, the dynamical force (moment) response of blade and the rotating of guide vane are also obtained.

The Numerical Simulation of the Airflow for Reducing Vibrations of an Actuator in HDDs (하드디스크 드라이브 내부 유동에 의한 액추에이터의 진동 저감을 위한 수치해석 연구)

  • Park, Jae-Hyun;Yoo, Jin-Gyoo;Rhim, Yoon-Chul
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.664-669
    • /
    • 2003
  • Recently, the recording density of hard disk drives has improved at an annual percentage rate of 100%. Therefore for faster access, higher disk rotational speeds will be required. The influence of the airflow produced by the rotation of a disk on the positioning accuracy has become a serious topic of research and the aerodynamic aspect of hard disk drives is now quite considerable with the increases in recording density and higher rotational speeds. Unsteady airflow in an actual hard disk drive is numerically simulated by using LES(Large Eddy Simulation) technique, we could predicted and aerodynamic mechanism that was related actuators' surroundings in HDD. At a result, with modifying the various shapes of the E-block and Damper, we estimated the characteristic of the influence of airflow in HDDs.

  • PDF