• Title/Summary/Keyword: large earthquake

Search Result 777, Processing Time 0.02 seconds

A Study on Dynamic Response Analysis of High Structure under Earthquake Load (지진하중을 받는 고층건물의 동적응답 해석에 관한 연구)

  • 배동명;신창혁
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.4
    • /
    • pp.337-346
    • /
    • 2000
  • Earthquake is a natural disaster accompanied by damage of human and properties caused by the ground motion, crustal movements, faults as well as tidal wave. The earthquake is known to occur mostly in earthquake-prone areas and the Korean Peninsula is known to be relatively safe in terms of geological characteristics. In order to withstand on severe environmental dynamic random load such as an earthquake, the large structure need to be designed to withstand the anticipated seismic tremor. The seismetic design is essential for building structures, bridges, and large structures which is handles explosive gases. Thus, the necessity of earthquake resistant analysis for large structure is growing and the capability of dynamic analysis should be obtained. In this thesis, dynamic responses of a high building(height 60m, width 18) which subjected to random earthquake load are presented which responses are derived using dynamic analysis methods such as response spectrum analysis, mode superposition and direct integration. Each results are also compared to review the merit of each methods.

  • PDF

Important Parameters Related With Fault for Site Investigation of HLW Geological Disposal

  • Jin, Kwangmin;Kihm, You Hong;Seo, Dong-Ik;Kim, Young-Seog
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.4
    • /
    • pp.533-546
    • /
    • 2021
  • Large earthquakes with (MW > ~ 6) result in ground shaking, surface ruptures, and permanent deformation with displacement. The earthquakes would damage important facilities and infrastructure such as large industrial establishments, nuclear power plants, and waste disposal sites. In particular, earthquake ruptures associated with large earthquakes can affect geological and engineered barriers such as deep geological repositories that are used for storing hazardous radioactive wastes. Earthquake-driven faults and surface ruptures exhibit various fault zone structural characteristics such as direction of earthquake propagation and rupture and asymmetric displacement patterns. Therefore, estimating the respect distances and hazardous areas has been challenging. We propose that considering multiple parameters, such as fault types, distribution, scale, activity, linkage patterns, damage zones, and respect distances, enable accurate identification of the sites for deep geological repositories and important facilities. This information would enable earthquake hazard assessment and lower earthquake-resulted hazards in potential earthquake-prone areas.

Behavior of a steel bridge with large caisson foundations under earthquake and tsunami actions

  • Kang, Lan;Ge, Hanbin;Magoshi, Kazuya;Nonaka, Tetsuya
    • Steel and Composite Structures
    • /
    • v.31 no.6
    • /
    • pp.575-589
    • /
    • 2019
  • The main focus of this study is to numerically investigate the influence of strong earthquake and tsunami-induced wave impact on the response and behavior of a cable-stayed steel bridge with large caisson foundations, by assuming that the earthquake and the tsunami come from the same fault motion. For this purpose, a series of numerical simulations were carried out. First of all, the tsunami-induced flow speed, direction and tsunami height were determined by conducting a two-dimensional (2D) tsunami propagation analysis in a large area, and then these parameters obtained from tsunami propagation analysis were employed in a detailed three-dimensional (3D) fluid analysis to obtain tsunami-induced wave impact force. Furthermore, a fiber model, which is commonly used in the seismic analysis of steel bridge structures, was adopted considering material and geometric nonlinearity. The residual stresses induced by the earthquake were applied into the numerical model during the following finite element analysis as the initial stress state, in which the acquired tsunami forces were input to a whole bridge system. Based on the analytical results, it can be seen that the foundation sliding was not observed although the caisson foundation came floating slightly, and the damage arising during the earthquake did not expand when the tsunami-induced wave impact is applied to the steel bridge. It is concluded that the influence of tsunami-induced wave force is relatively small for such steel bridge with large caisson foundations. Besides, a numerical procedure is proposed for quantitatively estimating the accumulative damage induced by the earthquake and the tsunami in the whole bridge system with large caisson foundations.

Seismic Damage Analysis of Large Steel Structures (대형강구조물의 지진손상도 해석)

  • 송종걸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.199-206
    • /
    • 1997
  • Under sever earthquake, structural elements or structures may sustain a large number of inelastic excursions. To predict seismic damage of the structures with accuracy, much research for general definition of structural collapse and seismic damage analysis is required. The ductility method, the energy method and Park and Ang method for seismic damage analysis of structural elements and structures are compared in this paper. Also, the seismic damage analysis for system-level of structure is carried out using the ESDOF-system method and Powell method. To compare tendency of the seismic damage analysis using each methods, example analysis is accomplished for several cases of different structures and different earthquake excitation.

  • PDF

Experiment on the Anomalous Animal Behaviors by Electric Field Effects for detecting Earthquake Precursors (지진전조현상 파악을 위한 전기장 효과에 의한 동물 이상 행동 실험)

  • 경재복;윤장근
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.57-64
    • /
    • 2001
  • There are some previous reports that some animals such as rats and birds move in a large group and act abnormally to avoid the large earthquake. This study is to experimentally testify what relations exist between the anomalous animal behavior and electric field effect, which is reported due to the piezoelectric effects in a basement rock before earthquake occurrences. When electric field is applied to the whole bottom of the cage, they show nervous behaviors such as grooming, washing their faces, standing on legs or running around in panic to avoid the electric field. When more strong electric field is applied, they jump with shrieking and mount on the electric line. The rat shows more sensitive anomalous behavior than the bird. Even though the current to the experimental birds and rats is just a few $\mu$A, they react in various ways. The anomalous animal behaviors under the small ground electric field may have some relations to the actual phenomena before great earthquake. This kind of study is quite worthy for the understanding of earthquake precursors.

  • PDF

Tsunami Forecasting along the East Coast of Korea (한국 동해안의 지진해일(Tsunami) 예측)

  • 추교승
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.57-69
    • /
    • 1997
  • All of the Tsumami which affected severly the east coast of the Korean Peninsula in the years 1741-1993 are caused by earthquakes occurred along the boundary sea of Japan and norther Honshu. These earthquakes with magnitude greater than 7.0 are results of relative movement between the North American Plate and Urasian Plate. The active fault along the boundary of the two plates is attracted by many researchers since the 1983 May earthquake of magnitude 7.7. It is important to anticipate when the next large earthquake will occur and how much it affect the east coast of Korea. Among a few models of spatial seismic gap were proposed for earthquake occurrences accompanying Tsunami, Ishikawas' east-west seismic gap model is the most probable one. There is a tendency that the period between the activities of the active faults becomes shorter. It is expected that a large earthquake of magnitude 7.0 or above will occur along the eastern boundary of Japan Sea at the end of this century and produce Tsunami at the east coast of Korea.

  • PDF

Evaluation of MCC seismic response according to the frequency contents through the shake table test

  • Chang, Sung-Jin;Jeong, Young-Soo;Eem, Seung-Hyun;Choi, In-Kil;Park, Dong-Uk
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1345-1356
    • /
    • 2021
  • Damage to nuclear power plants causes human casualties and environmental disasters. There are electrical facilities that control safety-related devices in nuclear power plants, and seismic performance is required for them. The 2016 Gyeongju earthquake had many high-frequency components. Therefore, there is a high possibility that an earthquake involving many high frequency components will occur in South Korea. As such, it is necessary to examine the safety of nuclear power plants against an earthquake with many high-frequency components. In this study, the shaking table test of electrical facilities was conducted against the design earthquake for nuclear power plants with a large low-frequency components and an earthquake with a large high-frequency components. The response characteristics of the earthquake with a large high-frequency components were identified by deriving the amplification factors of the response through the shaking table test. In addition, safety of electrical facility against the two aforementioned types of earthquakes with different seismic characteristics was confirmed through limit-state seismic tests. The electrical facility that was performed to the shaking table test in this study was a motor control center (MCC).

Effect of shear wall location in rigid frame on earthquake response of roof structure

  • Ishikawa, Koichiro;Kawasaki, Yoshizo;Tagawa, Kengo
    • Structural Engineering and Mechanics
    • /
    • v.11 no.6
    • /
    • pp.605-616
    • /
    • 2001
  • The purpose of this study is to investigate the effect of the shear wall location in rigid frames on the dynamic behavior of a roof structure due to vertical and horizontal earthquake motions. The study deals with a gabled long span beam supported by two story rigid frames with shear walls. The earthquake response analysis is carried out to study the responses of the roof: vibration mode, natural period, bending moment and horizontal shear force of the bearings. The study results in the following conclusions: First, a large horizontal stiffness difference between the side frames is caused by the shear wall location, which results in a large vertical vibration of the roof and a large shear force at the side bearings. Second, in this case, the seismic design method for ordinary buildings is not useful in determining the distribution of the static equivalent loads for the seismic design of this kind of long span structures.

Seismic Response Analysis of a Large Scale Soil-Structure Interaction Test Structure on Flexible Site (유연지반상 대형내진시험구조물의 지진응답해석)

  • 조양희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.257-264
    • /
    • 1997
  • Seismic responses of the Hualien large scale seismic test model on a layered soil site are estimated for two recorded earthquakes and the analysis results are then compared and evaluated with the recorded responses. The method adopted for the analysis is based on substructuring method using a lumped parameter model in both the frequency and time domain. the study results indicate that the proposed method can reasonably estimate the earthquake responses of a soil-structure interaction system for engineering purposes.

  • PDF

Approach to the Earthquake Prediction by Analyzing Foreshocks of Large Korean Historical Earthquakes (역사지진에서 강진의 전진에 대한 특성 분석을 통한 지진 예지에 대한 고찰)

  • E, Sang-Hion;Lee, Kie-Hwa
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.93-101
    • /
    • 2005
  • Seismicity changes associated with foreshocks of large Korean historical earthquakes of MMI > VIII are investigated for earthquake prediction study. A number of tests showed that b-values of foreshocks associated with these large earthquakes are most stable for precursor period of 13 years before the earthquake and rectangular source area of $1.1^{\circ}$ by $1.1^{\circ}$ around the epicenter. The b-values of foreshocks for 11 large events of MMI > VIII for the above foreshock area and precursor period turns out to be smaller than the value of 0.36 for the whole historical earthquakes with average 0.27. Epicenters of these foreshocks of small b-values are distributed close to the location of the main large earthquake. These observations indicate a possibility of predicting large earthquakes by closely monitoring the change of b-value for an extended period over decades in the Korean peninsula.

  • PDF