• Title/Summary/Keyword: large dna

Search Result 910, Processing Time 0.026 seconds

Experimental Analysis of Recent Works on the Overlap Phase of De Novo Sequence Assembly (De novo 시퀀스 어셈블리의 overlap 단계의 최근 연구 실험 분석)

  • Lim, Jihyuk;Kim, Sun;Park, Kunsoo
    • Journal of KIISE
    • /
    • v.45 no.3
    • /
    • pp.200-210
    • /
    • 2018
  • Given a set of DNA read sequences, de novo sequence assembly reconstructs a target sequence without a reference sequence. For reconstruction, the assembly needs the overlap phase, which computes all overlaps between every pair of reads. Since the overlap phase is the most time-consuming part of the whole assembly, the performance of the assembly depends on that of the overlap phase. There have been extensive studies on the overlap phase in various fields. Among them, three state-of-the-art results for the overlap phase are Readjoiner, SOF, and Lim-Park algorithm. Recently, a rapid development of sequencing technology has made it possible to produce a large read dataset at a low cost, and many platforms for generating a DNA read dataset have been developed. Since the platforms produce datasets with different statistical characteristics, a performance evaluation for the overlap phase should consider datasets with these characteristics. In this paper, we compare and analyze the performances of the three algorithms with various large datasets.

Chemisorption of Thiolated Listeria monocytogenes-specific DNA onto the Gold Surface of Piezoelectric Quartz Crystal

  • Ryu, Sung-Hoon;Jung, Sang-Mi;Kim, Namsoo;Kim, Woo-Yeon
    • Journal of Applied Biological Chemistry
    • /
    • v.44 no.4
    • /
    • pp.163-166
    • /
    • 2001
  • Piezoelectric (PZ) crystal biosensor system was used to detect the DNA of food pathogenic Listeria monocytogenes. L. monocytogenes-specific DNA was multiplied via the polymerase chain reaction using LM1 oligonucleotide (5'-TTACGAATTAAAAAGGAGCG-3') and LM2 oligonucleotide (5'-TTAAATCAGCAGGGGTCTTT-3') as primers. DNA fragment of 161 bp, which was specific only for L. monocytogenes, was observed. To obtain a large amount of single-stranded DNA containing an SH group used for coupling to the gold electrode chemisorptively, LM1 oligonucleotide containing a mercaptohexyl group was utilized as a single strand PCR primer. The PCR product was immobilized onto the gold electrode of PZ crystal, and hybridization was monitored in quartz crystal microbalance (QCM) system by injecting the antisense single-stranded DNA of 161 nucleotides obtained via the single strand PCR using the unmodified LM2 primer. Approximately 70 Hz of frequency drop was observed in the QCM system in the case of two consecutive injections of $5{\mu}g$ of the antisense single-stranded DNA.

  • PDF

A Plausible Method for the Diagnosis of Genetic Disorders Using Full Length cDNA

  • Hur, Hyang-Suk;Lee, Young-Won;Park, Hyoung-Woo;Kim, Myoung-Hee
    • Biomedical Science Letters
    • /
    • v.7 no.1
    • /
    • pp.1-5
    • /
    • 2001
  • A cDNA of coagulation Factor IX gene has been screened from the $\lambda$gt11 human fetal liver cDNA library, and used to construct a 2.8-kb full length cDNA after recombining with the N-terminal fragment from pTZ-FIX. Human genomic DNA was isolated, digested with the restriction endonucleases, TaqI, EcoRI, and HindIII, and Southern hybridization was performed using the full length factor IX cDNA as a probe. The hybridized bands generated by the restriction endonucleases were the followings: TaqI, 0.3, 1.0, 1.6, 1.8, 2.7, 3.7, and 5.3 kb bands; EcoRI, 1.8, 4.8, 4.9, 5.5, 6.8, and 12.6 kb bands; HindIII, 4.1, 4.4, 5.2, 5.8, 7.6, and 12.5 kb bands. When the Southern bands were physically mapped along the genome, about 50-kb continuous region harboring almost all of the genomic region of Factor Ⅸ gene was covered. These results suggest a possibility of using an exonal cDNA probe to diagnose abnormalities including large deletions, insertions, and rearrangements along the genome, if there is any.

  • PDF

Molecular Analysis of Complete SSU to LSU rDNA Sequence in the Harmful Dinoflagellate Alexandrium tamarense (Korean Isolate, HY970328M)

  • Ki, Jang-Seu;Han, Myung-Soo
    • Ocean Science Journal
    • /
    • v.40 no.3
    • /
    • pp.155-166
    • /
    • 2005
  • New PCR primers (N=18) were designed for the isolation of complete SSU to LSU rDNA sequences from the dinoflagellate Alexandrium tamarense. Standard PCR, employing each primer set selected for amplifications of less than 1.5 kb, successfully amplified the expected rDNA regions of A. tamarense (Korean isolate, HY970328M). Complete SSU, LSU rDNAs and ITS sequences, including 5.8S rDNA, were recorded at 1,800 bp, 520 bp and 3,393 bp, respectively. The LSU rDNA sequence was the first report in Alexandrium genus. No intron was found in the LSU rRNA coding region. Twelve D-domains within the LSU rDNA were put together into 1,879 bp (44.4% G+C), and cores into 1514 bp (42.8% G+C). The core sequence was significantly different (0.0867 of genetic distance, 91% sequence similarity) in comparison with Prorocentrum micans (GenBank access. no. X16108). The D2 region was the longest in length (300 bp) and highly variable among the 12 D-domains. In a phylogenetic analysis using complete LSU rDNA sequences of a variety of phytoplankton, A. tamarense was clearly separated with high resolution against other species. The result suggests that the sequence may resolve the taxonomic ambiguities of Alexandrium genus, particularly of the tamarensis complex.

Real-Time Detection of DNA Hybridization Assay by Using Evanescent Field Microscopy

  • Kim, Do-Kyun;Choi, Yong-Sung;Murakami, Yuji;Tamiya, Eiichi;Kwon, Young-Soo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.3
    • /
    • pp.85-90
    • /
    • 2001
  • The determination of DNA hybridization reaction can apply the molecular biology research, clinic diagnostics, bioengineering, environment monitoring, food science and other application area. So, the improvement of DNA detection system is very important for the determination of this hybridization reaction. In this study, we report the characterization of the probe and target oligonucleotide hybridization reaction using the evanescent field microscopy. First, we have fabricated DNA chip microarray. The particles which were immobilized oligonucleotides were arranged by the random fluidic self-assembly on the pattern chips, using hydrophobic interaction. Second, we have detected DNA hybridization reaction using evanescent field microscopy. The 5'-biotinylated probe oligonucleotides were immobilized on the surface of DNA chip microarray and the hybridization reaction with the Rhodamine conjugated target oligonucleotide was excited fluorescence generated on the evanescent field microscopy. In the foundation of this result, we could be employed as the basis of a probe olidonucleotide, capable of detecting the target oligonucleotide and monitoring it in a large analyte concentration range and various mismatching condition.

  • PDF

Isolation and Characterization of the Ribosomal Protein 46 Gene in Drosophila melanogaster

    • Animal cells and systems
    • /
    • v.2 no.1
    • /
    • pp.113-116
    • /
    • 1998
  • A cDNA clone coding for ribosomal protein 46 (rp46) which is a component of 60S ribosomal large subunit has been identified from Drosophila melanogaster. A cDNA clone encoding S. cerevisiae rp46 was used as a probe to screen a Drosophila larvae cDNA library. The DNA sequence analysis revealed that the cDNA coding for Drosophils rp46 contains a complete reading frame of 153 nucleotides coding for 51 amino acids. The deduced amino acid sequence showed 71-75% homology with those of other eukaryotic organisms. Northern blot analysis showed that about 1-kb rp46 transcripts are abundant throughout fly development. Whole mount embryonic mRNA in situ hybridization also showed no preferential distribution of the transcripts to any specific region. The chromosomal in situ hybridization revealed that the identified gene is localized at position 60C on the right arm of the second polytene chromosome with a possibility of single copy.

  • PDF

Residence Time Distribution in the Chromatographic Column: Applications in the Separation Engineering of DNA

  • Park, Young G.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.2
    • /
    • pp.117-125
    • /
    • 2003
  • Experimental and theoretical works were performed for the separation of large polyelectrolyte, such as DNA, in a column packed with gel particles under the influence of an electric field. Since DNA quickly orient in the field direction through the pores, this paper presents how intraparticle convection affects the residence time distribution of DNAs in the column. The concept is further illustrated with examples from solid -liquid systems, for example, from chromatography Showing how the column efficiency is improved by the use of a n electric field. Dimensionless transient mass balance equations were derived, taking into consideration both diffusion and electrophoretic convection. The separation criteria are theoretically studied using two different Peclet numbers in the fluid and solid phases. These criteria were experimentally verified using two different DNAs via electrophoretic mobility measurements. which showed how the separation position of the DNAs varies in the column in relation to the Peg/Pef values of an individual DNA. The residence time distribution was solved by an operator theory and the characteristic method to yield the column response.

Preliminary search of intraspecific chloroplast DNA variation of nine evergreen broad leaved plants in East Asia

  • Lee, Jung-Hyun;Lee, Byoung-Yoon;Choi, Byoung-Hee
    • Korean Journal of Plant Taxonomy
    • /
    • v.41 no.3
    • /
    • pp.194-201
    • /
    • 2011
  • In order to acquire information on chloroplast DNA markers to evaluate the genetic diversity of evergreen broad leaved plants, we investigated the intraspecific variation of cpDNA in eight non-coding regions of nine species commonly distributed in East Asia. Although no variations were detected in psbA-trnH, rpoB-trnC, rpl16 and atpB-rbcL regions, a relatively large amount of intraspecific variations was detected in the psbC-trnS, rps16 and trnL-F regions. These results suggested that these three cpDNA markers are suitable to assess genetic diversity of the species investigated in this study. In contrast, intraspecific variations were detected in seven taxa except Hedera rhombea and Neolitsea aciculata. Neolitsea sericea and the taxa of Quercus had many polymorphic sites.

Recent Advances in DNA Sequencing by End-labeled Free-Solution Electrophoresis (ELFSE)

  • Won, Jong-In
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.3
    • /
    • pp.179-186
    • /
    • 2006
  • End-Labeled Free-Solution Electrophoresis (ELFSE) is a new technique that is a promising bioconjugate method for DNA sequencing (or separation) and genotyping by both capillary and microfluidic device electrophoresis. Because ELFSE enables high-resolution electrophoretic separation in aqueous buffer alone (i.e., without a polymer matrix), it eliminates the need to load viscous polymer networks into electrophoresis microchannels. To achieve microchannel DNA separations with high performance, ELFSE requires monodisperse perturbing entities (i.e., drag-tags), which create a large amount of frictional drag when pulled behind DNA during free-solution electrophoresis, and which have other properties suitable for microchannel electrophoresis. In this article, the theoretical concepts of ELFSE and the required characteristics of the drag-tag molecules for the ultimate performance of ELFSE are reviewed. Additionally, the merits and limitations of current drag-tags are also discussed in the context of recent experimental data of ELFSE separation (or sequencing).

Glial Cell-specific Regulation of the JC virus Early Promoter by Silencer and DNA Methylation (Silencer 및 DNA methylation에 의한 JC virus early promoter의 뇌교세포 특이적인 조절)

  • 김희선;우문숙
    • YAKHAK HOEJI
    • /
    • v.46 no.2
    • /
    • pp.143-148
    • /
    • 2002
  • The human polyomavirus JC virus is the etiologic agent of progressive multifocal leukoencephalopathy (PML). The JC virus early promoter directs cell-specific expression of the viral replication factor large T antigen, thus transcriptional regulation constitutes a major mechanism of glial tropism in PML. Here we found that pentanucleotide sequence immediately upstream of the TATA sequence functions as a cell-specific silencer in the JC virus transcription. In vitro binding studies showed that synthetic oligonucleotides spanning a pentanucleotide sequence, designated "oligo 2", interacts with nuclear proteins from non-glial cells in a cell-specific manner. Furthermore, the sequence preferentially repressed the heterologous thymidine kinase promoter activity in non-glial cells. We also tested whether JC virus transcription is controlled by DNA methylation. Transient transfection of in vitro methylated JC virus promoter abolished transcription in both the glial and non-glial cells. The repression fold was much larger in glial cells than in non-glial cells. Taken together, this finding suggests that glial cell-specific expression of the JC virus is controlled by DNA methylation as well as cell-specific silencers.