• 제목/요약/키워드: large displacement analysis

검색결과 727건 처리시간 0.03초

준해석 설계민감도를 위한 변위하중법 (Displacement-Load Method for Semi-Analytical Design Sensitivity Analysis)

  • 유정훈;김흥석;이태희
    • 대한기계학회논문집A
    • /
    • 제28권10호
    • /
    • pp.1590-1597
    • /
    • 2004
  • Three methods of design sensitivity analysis for structures such as numerical method, analytical method and semi-analytical method have been developed for the last three decades. Although analytical design sensitivity analysis can provide very exact result, it is difficult to implement into practical design problems. Therefore, numerical method such as finite difference method is widely used to simply obtain the design sensitivity in most cases. The numerical differentiation is sufficiently accurate and reliable fur most linear problems. However, it turns out that the numerical differentiation is inefficient and inaccurate in nonlinear design sensitivity analysis because its computational cost depends on the number of design variables and large numerical errors can be included. Thus the semi-analytical method is more suitable for complicated design problems. Moreover, semi-analytical method is easy to be performed in design procedure, which can be coupled with an analysis solver such as commercial finite element package. In this paper, implementation procedure fur the semi-analytical design sensitivity analysis outside of the commercial finite element package is studied and the computational technique is proposed for evaluating the partial differentiation of internal nodal force, so called pseudo-load. Numerical examples coupled with commercial finite element package are shown to verify usefulness of proposed semi-analytical sensitivity analysis procedure and computational technique for pseudo-load.

대규모 노천 석탄광산의 한계사면높이 결정과 사면파괴 예측을 위한 계측자료 해석 (Determination of Critical Slope Height for Large Open-pit Coal Mine and Analysis of Displacement for Slope failure Prediction)

  • 정용복;선우춘;이종범
    • 터널과지하공간
    • /
    • 제18권6호
    • /
    • pp.447-456
    • /
    • 2008
  • 노천광산에서 사면설계는 안정성과 경제성 측면에서 동시에 접근하여 결정해야 한다. 또한 일반 도로나 철도 연변의 사면과는 달리 대부분 지보나 보강없이 굴착해야 하기 때문에 사면각도가 가장 중요한 설계 변수이다. 본 연구에서는 인도네시아 파시르에 위치한 노천채광방식의 대규모 석탄광산 사면에 대하여 안정성 측면에서의 사면 각도 및 한계사면높이를 결정하였으며 이러한 설계가 가지고 있는 불확실성을 보완할 수 있는 계측 및 계측자료 해석을 수행하였다. 연구 결과, 사면각도(Overall Elope angle) $30^{\circ}$를 유지하는 경우 안전율 1.5를 확보하는 최대개발심도는 $353{\sim}438m$로 계산되었으나 강도정수에 대한 민감도분석결과를 고려할 때 사면높이는 300m를 초과하지 않는 것이 바람직하다. 또한 변위계측자료에 대한 역변위속도 분석 결과가 현장사면 사례와 잘 일치하여 이 방법을 통해 사면의 불안정성 및 파괴시기를 대략적으로 예측할 수 있을 것으로 판단된다.

사면 변형 측정을 위한 3차원 레이저 스캐너의 적용 (Application of 3-D Laser Scanner for the Measurement of Slope Displacement)

  • 오석훈;서백수
    • 한국지구과학회지
    • /
    • 제31권6호
    • /
    • pp.555-562
    • /
    • 2010
  • 응력을 받고 있는 사면의 변형 여부를 분석하기 위해 3차원 레이저 스캐너를 이용하여 일정 기간의 차이를 두고 정밀 측량을 수행하였다. 3차원 레이저 스캐너는 비접촉식으로 레이저 빔의 주행시간을 이용하여 대상점의 3차원 좌표를 결정할 수 있는 장비로써, 사면이나 대형 구조물의 변위를 분석하는데 매우 유용한 장비이다. 스캐닝은 약 7개월의 시간차이를 두고 이루어졌으며, 측정간의 비교를 위해 사면의 외부에 기준점을 유지하여 사용하였다. 변형 여부를 판단하기 위해, 평면각 변화, 곡면도 변화, 격자 틀의 각도 변화, 공통 병합점의 편차 등을 분석하였다. 분석 결과, 사면의 변형이 특히 많이 발생한 지점을 결정할 수 있었고 이를 보수·보강 방안의 마련에 활용할 수 있었다.

Kinematic Comparative Analysis of Short Turns between Skilled and Unskilled Alpine Skiers

  • Jo, Hyun Dai
    • 한국운동역학회지
    • /
    • 제29권4호
    • /
    • pp.219-226
    • /
    • 2019
  • Objective: The purpose of this study is to provide a better understanding of short turn mechanism by describing short turns after kinematic analysis and provide skiers and winter sports instructors with data through which they are able to analyze right postures for turns in skiing in a systematic, rational and scientific manner. Method: For this, a mean difference of kinematic variables (ski-hip angle, ski-shoulder twist angle, pole checking angle, the center of gravity (CG) displacement, trunk forward lean angle) was verified against a total of 12 skiers (skilled and unskilled, 6 persons each), regarding motions from the up-start to down-end points for short turns. Results: There was no difference in a ski-hip twist angle. The ski-shoulder twist angle was large at the up-start point while a pole-checking angle was high at the down-end point in skilled skiers. Concerning the horizontal displacement of CG, skilled skiers were positioned on the right side at the upstart point. No significant difference was observed in the trunk forward lean angle. Conclusion: According to the ski-shoulder twist angle and CG horizontal displacement results, the upper body should be kept leant toward the pole. In addition, big turns should be made via edging and angulation. During pole checking, the hand holding the pole should be thrown and released toward a vector direction of the forearm.

Nonlinear semi-active/passive retrofit design evaluation using incremental dynamic analysis

  • Rodgers, Geoffrey W.;Chase, J. Geoffrey;Roland, Thomas;Macrae, Gregory A.;Zhou, Cong
    • Earthquakes and Structures
    • /
    • 제22권2호
    • /
    • pp.109-120
    • /
    • 2022
  • Older or damaged structures can require significant retrofit to ensure they perform well in subsequent earthquakes. Supplemental damping devices are used to achieve this goal, but increase base shear forces, foundation demand, and cost. Displacement reduction without increasing base shear is possible using novel semi-active and recently-created passive devices, which offer energy dissipation in selected quadrants of the force-displacement response. Combining these devices with large, strictly passive energy dissipation devices can offer greater, yet customized response reductions. Supplemental damping to reduce response without increasing base shear enables a net-zero base shear approach. This study evaluates this concept using two incremental dynamic analyses (IDAs) to show displacement reductions up to 40% without increasing base shear, more than would be achieved for either device alone, significantly reducing the risk of response exceeding the unaltered structural case. IDA results lead to direct calculation of reductions in risk and annualized economic cost for adding these devices using this net-zero concept, thus quantifying the trade-off. The overall device assessment and risk analysis method presented provides a generalizable proof-of-concept approach, and provides a framework for assessing the impact and economic cost-benefit of using modern supplemental energy dissipation devices.

Integration Technique of Smart Infra Management for Smart City Construction

  • Yeon, Sangho;Yeon, Chunhum
    • International Journal of Contents
    • /
    • 제15권2호
    • /
    • pp.75-78
    • /
    • 2019
  • The Integration technique of combining the measurement method with the fine precision of the sensor collecting the satellite-based information to determine the displacement space is available to a variety of diagnostic information. The measurement method by a GNSS with the sensors is needed since there will always be occasional occurrence of natural disasters caused by various environmental factors and the surroundings. Such attempts carried out nationally by distributed torsional displacement of the terrain and facilities. The combination of the various positioning analysis of mm-class for the facility of main area observed is required constantly in real time information of the USN/IoT Smart sensors and should be able to utilize such information as a precisely fine positioning information for the precisely fine displacement of the semi-permanent main facilities. In this study, for the installation of the receiving system, the USN/IoT base line positioning are easily accessible for the target bridges. Transmitting hourly from the received data is also executed in real time using the wireless Wi-Fi/Bluetooth bridges and related facilities to automatically process a fine position displacement. The results obtained from this method can be analyzed by real-time monitoring for a large structure or facilities for disaster prevention.

슬릿형 강재이력 감쇠장치의 성능평가를 위한 실험연구 (An Experimental Study on Performance Evaluation of Hysteretic Steel Slit Damper)

  • 최기선;이현지;김민선;유영찬
    • 대한건축학회논문집:구조계
    • /
    • 제34권1호
    • /
    • pp.33-39
    • /
    • 2018
  • This study performed experimental validation of the hysteretic steel slit damper's basic and dependent characteristics, which should be considered for the design. The basic characteristic of the steel slit damper is used for determining design properties of non-linear analysis, such as yielding strength, yielding displacement, elastic stiffness and post-yielding stiffness. In order to evaluate dependent characteristics of the hysteretic steel slit damper, repeated deformation capacity with respect to the displacement, velocity and aspect ratio of the damper was evaluated. In this study, steel slit damper, which is widely used in Korea, was considered. The slit dampers with 55kN and 240kN of yielding strength were produced and tested. It was concluded that the slit damper's hysteresis behavior was affected by the dependent characteristics: displacement, velocity and aspect ratio. In other words, the steel slit damper's behavior was stable within limit displacement, and aspect ratio of the strut affected repeated deformation capacity of the damper subjected to large deformation. In addition, it was observed that the repeated deformation capacity abruptly decreased at the high speed range (${\geq}60mm/sec$). Furthermore, the experimental results were evaluated with the criterion of the damping device specified in ASCE7-10.

자왜재료를 이용한 선형 작동기의 유한요소 해석 (Finite Element Analysis of Magnetostrictive Linear Actuator)

  • 김윤창;김재환
    • 한국소음진동공학회논문집
    • /
    • 제17권4호
    • /
    • pp.356-362
    • /
    • 2007
  • Magnetostrictive materials have been used for linear actuators due to its large strain, large force output with moderate frequency band in the presence of magnetic field. However their performance analysis is difficult because of nonlinear material behaviors in terms of coupled strain-magnetic field dependence, nonlinear permeability, pre-stress dependence and hysteresis. This paper presents a finite element analysis technique for magnetostrictive linear actuator. To deal with coupled problems and nonlinear behaviors, a simple finite element approach is proposed, which is based on separate magnetic field calculation and displacement simulation. The finite element formulation and an in-house program development are illustrated, and a simulation model is made for a magnetostrictive linear actuator. The fabrication and performance test of the linear actuator are explained, and the performance comparison with simulation result is shown. Since this approach is simple, it can be applied for analyzing magnetostrictive underwater projectors and ultrasonic transducers.

Efficient Dynamic Response Analysis Using Substructuring Reduction Method for Discrete Linear System with Proportional and Nonproportional Damping

  • Choi, Dong-Soo;Cho, Maeng-Hyo;Kim, Hyun-Gi
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제9권1호
    • /
    • pp.85-99
    • /
    • 2008
  • The dynamic response analysis for large structures using finite element method requires a large amount of computational resources. This paper presents an efficient vibration analysis procedure by combining node-based substructuring reduction method with a response analysis scheme for structures with undamped, proportional or nonproportional damping. The iterative form of substructuring reduction scheme is derived to reduce the full eigenproblem and to calculate the dynamic responses. In calculating the time response, direct integration scheme is used because it can be applied directly to the reduced model. Especially for the non proportional damping matrix, the transformation matrices defined in the displacement space are used to reduce the system. The efficiency and the effectiveness of the present method are demonstrated through the numerical examples.

Dynamic analysis of offshore wind turbines

  • Zhang, Jian-Ping;Wang, Ming-Qiang;Gong, Zhen;Shi, Feng-Feng
    • Wind and Structures
    • /
    • 제31권4호
    • /
    • pp.373-380
    • /
    • 2020
  • For large-scale 5MW offshore wind turbines, the discrete equation of fluid domain and the motion equation of structural domain with geometric nonlinearity were built, the three-dimensional modeling of the blade considering fluid-structure interaction (FSI) was achieved by using Unigraphics (UG) and Geometry modules, and the numerical simulation and the analysis of the vibration characteristics for wind turbine structure under rotating effect were carried out based on ANSYS software. The results indicate that the rotating effect has an apparent effect on displacement and Von Mises stress, and the response and the distribution of displacement and Von Mises stress for the blade in direction of wingspan increase nonlinearly with the equal increase of rotational speeds. Compared with the single blade model, the blade vibration period of the whole machine model is much longer. The structural coupling effect reduces the response peak value of the blade displacement and Von Mises stress, and the increase of rotational speed enhances this coupling effect. The maximum displacement difference between two models decreases first and then increases along wingspan direction, the trend is more visible with the equal increase of rotational speed, and the boundary point with zero displacement difference moves towards the blade root. Furthermore, the Von Mises stress difference increases gradually with the increase of rotational speed and decreases nonlinearly from the blade middle to both sides. The results can provide technical reference for the safe operation and optimal design of offshore wind turbines.