• 제목/요약/키워드: large discharge flow

검색결과 184건 처리시간 0.028초

Development of Numerical Model for Unsteady Flow Analysis jin Discharge Culvert of Thermal Power Plant: I. Model Setup (열발전소 배수암거 부정류해석 수치모형의 개발 : I. 모형의 정립)

  • Yun, Seong-Beom;Lee, Gi-Hyeok
    • Journal of Korea Water Resources Association
    • /
    • 제30권6호
    • /
    • pp.761-768
    • /
    • 1997
  • A numerical model is developed to analyze the incompressible unsteady flow induced by the pump trip-out in the cooling water discharge culvert of thermal power plants. The numerical models has various features to deal concureently with the overall behavior of complicated unsteady flow due to the presence of cooling water internal system, seal well, air chamber, culvert, manholes, open channel and sea water. A leap-frog finite difference scheme is employed to solve governing equations, and the model is tested for a simple case of two tanks connected with a pipe. A fixed free surface boundary condition used earlier at the downstream end of culvert for large water body is investigated.

  • PDF

Development of a Thermal Model for Discharge Behavior of MH Hydrogen Storage Vessels (MH 수소저장 장치의 방출시 열거동 모사 수치 모델 개발)

  • O, Sang-Kun;Cho, Sung-Wook;Yi, Kyung-Woo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • 제22권2호
    • /
    • pp.178-183
    • /
    • 2011
  • Metal hydride alloys are a promising type of material in hydrogen storage applications, allowing for low-pressure, high-density storage. However, while many studies are being performed on enhancing the hydrogen storage properties of such alloys, there has been little research on large-scale storage vessels which make use of the alloys. In particular, large-scale, high-density storage devices must make allowances for the inevitable generation or absorption of heat during use, which may negatively impact functioning properties of the alloys. In this study, we develop a numerical model of the discharge properties of a high-density MH hydrogen storage device. Discharge behavior for a pilot system is observed in terms of temperature and hydrogen flow rates. These results are then used to build a numerical model and verify its calculated predictions. The proposed model may be applied to scaled-up applications of the device, as well as for analyses to enhance future device designs.

The furulamelllal study in order to obtain the hydrological design basis for hydrological structures in Korea (Run ofl estimate and Flood part) (한국에 있어서 제수문구조물의 설계의 기준을 주기 위한 수문학적 연구(류거, 홍수 편))

  • 박성우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • 제8권1호
    • /
    • pp.1011-1034
    • /
    • 1966
  • This thesis is the final report which has long been studied by the author to obtain the design basis for various hydrological constructions with the specific system suitable to the natural environmental conditions in Korea. This report is divided into two parts: one is to estimate runoff volume from watersheds and the other to estimate the peak discharge for a single storm. According to the result of observed runoff record from watersheds, it is known that Kajiyama formula is useful instrument in estimating runoff volume from watersheds in this country. But it has been found that this formula shows us 20-30% less than the actual flow. Therefore, when wihed to bring a better result, the watershed characteristics coefficient in this formula, that is, f-value, should be corrected to 0.5-0.8. As for the method to estimate peak discharge from drainage basin, the author proposes to classify it in two ways; one is small size watershed and the other large size watershed. The maximum -flood discharge rate $Q_p$ and time to peak Pt obtained from the observed record on the small size watershed are compared by various methods and formulas which are based upon the modern hydrological knowledge. But it was fou.d that it. was not a satisfied result. Therefore, the author proposes. tocomputate $Q_p$, to present 4.0-5.0% for the total runoff volume ${\Sigma}Q$.${\Sigma}Q$ is computed under the assumption of 30mm 103s in watershed per day and to change the theoritical total flow volume to one hour dura tion total flow rate when design daily storm is given. Time to peak Pt is derived from three parameters which are u,w,k. These are computed by relationship between total runoff volume (ha-m unit)and $Q_p$. (C.M.S. unit). Finally, the author checked out these results obtained from 51 hydrographs and got a satisfied result. Therefore the author suggested the model of design dimensionless unit-hydrograph. And the author believes that this model will be much available at none runoff record river site. In the large size watersheds in Korea when the maximum discharge occurs, the effective rainfall is two consequtive stormy days. So the loss in watershed was assutned as 6Omm/2days,and the author proposed 3-hour-daration hydrograph flow distribution percentage. This distribution percentage will be sure to form the hydrograph coordinate.

  • PDF

Discharge Capacity for Vertical Drain Boards with Hydraulic Gradient Variation (동수경사 변화에 따른 연직배수재의 통수능)

  • Kim, Ju-Hyong;Lee, Kwang-Wu;Cho, Sam-Deok;Chang, Gap-Shik
    • Journal of the Korean Geosynthetics Society
    • /
    • 제9권2호
    • /
    • pp.11-20
    • /
    • 2010
  • This paper studies the discharge capacity of vertical drain boards that is controlling hydraulic gradient among many factors in the specification. The KS K 0940(2008), a testing method based on the conventional Delft type method for measuring the discharge capacity of a vertical drain, was specified in Korea Standard recently. In this test method, the variation in hydraulic gradient can result in large differences in the discharge capacity for the same vertical drain board.

  • PDF

Hydrodynamic performance of a pump-turbine model in the "S" characteristic region by CFD analysis

  • Singh, Patrick Mark;Chen, Chengcheng;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권10호
    • /
    • pp.1017-1022
    • /
    • 2015
  • Specific hydrodynamic characteristic of pump-turbine during the start and load rejection process of generating mode causes anomalous increase of water pressure, along with large machine vibration, called "S" characteristic. The aim of this study is to understand and explain the hydrodynamic performance of pump-turbine at "S" characteristic region by using a model of pump-turbine system. The operation in the condition of runway and low discharge in a typical "S" characteristic curve may become unstable and complex flow appears at the passage of guide vane and impeller. Therefore, velocity and pressure distribution are investigated to give an all-sided explanation of the formation and phenomenon of this characteristic, with the assistance of velocity triangle analysis at the impeller inlet. From this study, the internal flow and pressure fluctuation at the normal, runway and low discharge points are explored, giving a deep description of hydrodynamic characteristic when the pump-turbine system operates with "S" characteristic.

Selection of Priority Management Target Tributary for Effective Watershed Management in Nam-River Mid-watershed (남강 중권역의 효율적인 유역관리를 위한 중점관리 대상지류 선정)

  • Jung, Kang-Young;Kim, Gyeong-Hoon;Lee, Jae-Woon;Lee, In Jung;Yoon, Jong-Su;Lee, Kyung-Lak;Im, Tae-Hyo
    • Journal of Korean Society on Water Environment
    • /
    • 제29권4호
    • /
    • pp.514-522
    • /
    • 2013
  • The major 24 tributaries in Nam-River mid-watershed were monitored for discharge and water quality in order to understand the characteristics of the watershed and to select the tributary catchment for improving water quality. According to the analytical results of discharge and water quality monitoring data of 24 tributaries, the mean value of discharge below $0.1m^3/s$ was 62.5% among the monitored tributaries and it mostly exceeded the water quality standards of Nam-river mid-watershed ($BOD_5$ = 3 mg/L, T-P = 0.1 mg/L over). According to the stream grouping method and the water quality delivery load density ($kg/day/km^2$) based on the results of tributary discharge and water quality monitoring, the tributary watersheds for improving the water quality were selected. In the Nam-River mid-watershed, tributaries in the GaJwaCheon, HaChonCheon catchment (Group D, $BOD_5$ = 3 mg/L over) and in the UirYeongCheon, SeokGyoCheon catchment (Group A, T-P = 0.1 mg/L over), which have a small flow (and/or large flow) and a high concentrations of water pollutants. The various water quality improving scheme for tributaries, in accordance with the reduction of potential point source pollution by living sewage and livestock wastewater, should be established and implemented.

Gas pulsation analysis of large reciprocating compressor in parallel operation (병렬 운전되는 대형 왕복동 압축기의 가스맥동 분석)

  • Kim, Seong-Jun;Kim, Hyun-Cheol;Kim, Hyun-Jin
    • Proceedings of the SAREK Conference
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.910-915
    • /
    • 2009
  • For large reciprocating compressors in parallel operation, an analytical study has been carried out on the gas pulsation in associated discharge piping lines. Since the pressure pulsation at a valve, valve dynamics, and the gas flow rate through the valve are interrelated, affecting one another, these need to be solved simultaneously. Acoustic transfer matrix method, which relates acoustic pressure and velocity at one location to those at another location, has been adopted to calculate the effect of the gas flow at one valve location on the gas pulsation at other valve locations.

  • PDF

임기광산 폐석적치장의 수리침투특성 분석

  • 지상우;정영욱;임길재
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 한국지하수토양환경학회 2004년도 임시총회 및 추계학술발표회
    • /
    • pp.394-398
    • /
    • 2004
  • This study was carried out to plan the prevention of the generation and discharge of acid mine drainage (AMD). Hydraulic characteristics were tested with the disk tension infiltrometer around the waste rock dump of the Imgi abandoned pyrophyllite mine in Busan, Korea. Because the waste rock dump of the Imgi mine have very low infiltration rate, most of rain was expected flowing into adjoined stream through the slope or plane as surface flow rather then throughflow or ground water. But slopes of the waste rock dump have many 'V' type erosion gullies and consist multi-layers. These gullies and multi-layers have coarse clastic particle layer which have very large hydraulic conductivity. So through these coarse clastic particle layers a large part of rain flow into ground. And also these layers could be played a function of aeration path, which induced oxidation of sulfide minerals and generation of AMD continuously.tinuously.

  • PDF

Gas Pulsation Analysis of Large Reciprocating Compressors in Parallel Operation (병렬 운전되는 대형 왕복동 압축기의 가스맥동 분석)

  • Kim, Seong-Jun;Kim, Hyun-Jae;Kim, Hyun-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제22권2호
    • /
    • pp.97-103
    • /
    • 2010
  • For large reciprocating compressors in parallel operation, an analytical study has been carried out on the gas pulsation in associated discharge piping lines. Since the pressure pulsation at a valve, valve dynamics, and the gas flow rate through the valve are interrelated, affecting one another, these need to be solved simultaneously. Acoustic transfer matrix method, which relates acoustic pressure and velocity at one location to those at another location, has been adopted to calculate the effect of the gas flow at one valve location on the gas pulsation at other valve locations.

Derivation of the Instantaneous Unit Hydrograph and Estimation of the Direct Runoff by Using the Geomorphologic Parameters (지상인자에 의한 순간단위도 유도와 유출량 예측)

  • 천만복;서승덕
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • 제32권3호
    • /
    • pp.87-101
    • /
    • 1990
  • The purpose of this study is to estimate the flood discharge and runoff volume at a stream by using geomorphologic parameters obtained from the topographic maps following the law of stream classification and ordering by Horton and Strahier. The present model is modified from Cheng' s model which derives the geomorphologic instantaneous unit hydrograph. The present model uses the results of Laplace transformation and convolution intergral of probability density function of the travel time at each state. The stream flow velocity parameters are determined as a function of the rainfall intensity, and the effective rainfall is calculated by the SCS method. The total direct runoff volume until the time to peak is estimated by assuming a triangular hydrograph. The model is used to estimate the time to peak, the flood discharge, and the direct runoff at Andong, Imha. Geomchon, and Sunsan basin in the Nakdong River system. The results of the model application are as follows : 1.For each basin, as the rainfall intensity doubles form 1 mm/h to 2 mm/h with the same rainfall duration of 1 hour, the hydrographs show that the runoff volume doubles while the duration of the base flow and the time to peak are the same. This aggrees with the theory of the unit hydrograph. 2.Comparisions of the model predicted and observed values show that small relative errors of 0.44-7.4% of the flood discharge, and 1 hour difference in time to peak except the Geomchon basin which shows 10.32% and 2 hours respectively. 3.When the rainfall intensity is small, the error of flood discharge estimated by using this model is relatively large. The reason of this might be because of introducing the flood velocity concept in the stream flow velocity. 4.Total direct runoff volume until the time to peak estimated by using this model has small relative error comparing with the observed data. 5.The sensitivity analysis of velocity parameters to flood discharge shows that the flood discharge is sensitive to the velocity coefficient while it is insensitive to the ratio of arrival time of moving portion to that of storage portion of a stream and to the ratio of arrival time of stream to that of overland flow.

  • PDF