• Title/Summary/Keyword: large deformations

Search Result 281, Processing Time 0.021 seconds

The stick-slip decomposition method for modeling large-deformation Coulomb frictional contact

  • Amaireh, Layla. K.;Haikal, Ghadir
    • Coupled systems mechanics
    • /
    • v.7 no.5
    • /
    • pp.583-610
    • /
    • 2018
  • This paper discusses the issues associated with modeling frictional contact between solid bodies undergoing large deformations. The most common model for friction on contact interfaces in solid mechanics is the Coulomb friction model, in which two distinct responses are possible: stick and slip. Handling the transition between these two phases computationally has been a source of algorithmic instability, lack of convergence and non-unique solutions, particularly in the presence of large deformations. Most computational models for frictional contact have used penalty or updated Lagrangian approaches to enforce frictional contact conditions. These two approaches, however, present some computational challenges due to conditioning issues in penalty-type implementations and the iterative nature of the updated Lagrangian formulation, which, particularly in large simulations, may lead to relatively slow convergence. Alternatively, a plasticity-inspired implementation of frictional contact has been shown to handle the stick-slip conditions in a local, algorithmically efficient manner that substantially reduces computational cost and successfully avoids the issues of instability and lack of convergence often reported with other methods (Laursen and Simo 1993). The formulation of this approach, however, has been limited to the small deformations realm, a fact that severely limited its application to contact problems where large deformations are expected. In this paper, we present an algorithmically consistent formulation of this method that preserves its key advantages, while extending its application to the realm of large-deformation contact problems. We show that the method produces results similar to the augmented Lagrangian formulation at a reduced computational cost.

Calculation of Welding Deformations by Simplified Thermal Elasto-plastic Analysis

  • Seo Sung Il
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.3
    • /
    • pp.40-49
    • /
    • 2004
  • Welding deformations injure the beauty of appearance of a structure, decrease its buckling strength and prevent increase of productivity. Welding deformations of real structures are complicated and the accurate prediction of welding deformations has been a difficult problem. This study proposes a method to predict the welding deformations of large structures accurately and practically based on the simplified thermal elasto-plastic analysis method. The proposed method combines the inherent strain theory with the numerical or theoretical analysis method and the experimental results. The weld joint is assumed to be divided into 3 regions such as inherent strain region, material softening region and base metal region. Characteristic material properties are used in structural modeling and analysis for reasonable simplification. Calculated results by this method show good agreement with the experimental results. It was proven that this method gives an accurate and efficient solution for the problem of welding deformation calculation of large structures.

On the elastic parameters of the strained media

  • Guliyev, Hatam H.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.53-67
    • /
    • 2018
  • The changes of parameters of pressure and velocity of propagation of elastic pressure and shear waves in uniformly deformed solid compressible media are studied within the nonclassically linearized approach (NLA) of nonlinear elastodynamics to create a new theoretical basis of the geomechanical interpretation of various groups of geophysical observational and experimental data. The cases of small and large deformations are considered while their describing by various elastic potentials, i.e., problems considering the physical and geometric nonlinearity. Convenient analytical formulae are obtained to calculate the indicated parameters in the deformed isotropic media within the nonclassical linear and nonlinear solution in the NLA. Specific numerical experiments are conducted in case of overall compression of various materials. It is shown that the method (generally accepted in the studies of mechanics of standard constructional materials) of additional linearization (relative to the pressure parameter) in the basic correlations of the NLA introduces substantial quantitative and qualitative errors into the results at significant preliminary deformations. The influences of the physical and geometric nonlinearity on the studied characteristics of the medium are large in various materials and differ qualitatively. The contribution of nonlinear components to the values of the considered parameters prevails over linear components at large deformations. When certain critical values of compression deformations in the medium are achieved, elastic waves with actual velocity cannot propagate in it. The values of the critical deformations for pressure and shear waves differ within different elastic potentials and variants of the theory of initial deformations.

A Study on the Prediction of Deformation of Welded Structures (용접구조물의 변형 예측에 관한 연구)

  • 서승일;장창두
    • Journal of Welding and Joining
    • /
    • v.15 no.5
    • /
    • pp.64-73
    • /
    • 1997
  • Deformations of structures due to welding appear much complicated and deformated modes are also complex. As parameters governing deformations are various and effect of parameters on deformations is not well known, precise prediction of deformation due to welding has been a difficult problem. Until now, many research papers as to welding deformation have been published, but the research results can explain only one aspect of welding deformation have been published, but the research results can explain only one aspect of welding deformation and are hard to be used in reasonable prediction of welding deformations in complicated structures. In this study, based on the accumulated results concerning to welding deformations, a practical method to predict complicated welding deformations of large structure is proposed. A simplified model to estimate residual plastic strains is suggested and main parameters affecting residual plastic strains are shown to be heat input and joint restaints. Inherent strain theory and experimental data are combined with the finite element method and welding deformations of large structures are calculated by elastic analysis. Comparison of calculated results with experimental data shows the accuracy and validity of the proposed method.

  • PDF

The effect of in-plane deformations on the nonlinear dynamic response of laminated plates

  • Kazanci, Zafer;Turkmen, Halit S.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.4
    • /
    • pp.589-608
    • /
    • 2012
  • In this study, the effect of in-plane deformations on the dynamic behavior of laminated plates is investigated. For this purpose, the displacement-time and strain-time histories obtained from the large deflection analysis of laminated plates are compared for the cases with and without including in-plane deformations. For the first one, in-plane stiffness and inertia effects are considered when formulating the dynamic response of the laminated composite plate subjected to the blast loading. Then, the problem is solved without considering the in-plane deformations. The geometric nonlinearity effects are taken into account by using the von Karman large deflection theory of thin plates and transverse shear stresses are ignored for both cases. The equations of motion for the plate are derived by the use of the virtual work principle. Approximate solution functions are assumed for the space domain and substituted into the equations of motion. Then, the Galerkin method is used to obtain the nonlinear algebraic differential equations in the time domain. The effects of the magnitude of the blast load, the thickness of the plate and boundary conditions on the in-plane deformations are investigated.

Nonlinear instability problems including localized plastic failure and large deformations for extreme thermo-mechanical loads

  • Ngo, Van Minh;Ibrahimbegovic, Adnan;Hajdo, Emina
    • Coupled systems mechanics
    • /
    • v.3 no.1
    • /
    • pp.89-110
    • /
    • 2014
  • In this work we provide the theoretical formulation, discrete approximation and solution algorithm for instability problems combing geometric instability at large displacements and material instability due to softening under combined thermo-mechanical extreme loads. While the proposed approach and its implementation are sufficiently general to apply to vast majority of structural mechanics models, more detailed developments are provided for truss-bar model. Several numerical simulations are presented in order to illustrate a very satisfying performance of the proposed methodology.

Real-Time Simulation of Large Rotational Deformation and Manipulation (큰회전 변형 및 조작의 실시간 시뮬레이션)

  • Choi, Min-Gyu;Ko, Hyeong-Seok
    • Journal of the Korea Computer Graphics Society
    • /
    • v.10 no.1
    • /
    • pp.15-21
    • /
    • 2004
  • This paper proposes a real-time technique for simulating large rotational deformations. Modal analysis based on a linear strain tensor has been shown to be suitable for real-time simulation, but is accurate only for moderately small deformations. In the present work, we identify the rotational component of an infinitesimal deformation, and extend linear modal analysis to track that component. We then develop a procedure to integrate the small rotations occurring al the nodal points. An interesting feature of our formulation is that it can implement both position and orientation constraints in a straightforward manner. These constraints can be used to interactively manipulate the shape of a deformable solid by dragging/twisting a set of nodes, Experiments show that the proposed technique runs in real-time even for a complex model, and that it can simulate large bending and/or twisting deformations with acceptable realism.

  • PDF

A Finite Element Nonlinear Formulation for Large Deformations of Plane Frames (평면 뼈대구조물의 큰 변형에 대한 비선형 유한요소의 정식화)

  • 윤영묵;박문호
    • Computational Structural Engineering
    • /
    • v.7 no.4
    • /
    • pp.69-83
    • /
    • 1994
  • An explicit finite element nonlinear formulation for very large deformations of plane frame structures is developed. The formulation is based on an updated material reference frame and hence a true stress-strain relationship can be directly applied to characterize the properties of material which is subjected to very large deformations. In the formulation, a co-rotational approach is applied to deal with the large rotations but small strain problems. Straight beam element is considered when the strain of an element is large. The element formulation is based on the small deflection beam theory but with the inclusion of the effect of axial force. The element equations are constructed in an element local coordinate system which rotates and translates with the element, and then transformed to the global coordinate system. Several numerical examples are analyzed to validate the presented formulation.

  • PDF

Anisotropic Constitutive Model at Large Viscoplastic Deformations (탄소성 대변형에 관한 비등방 구성방정식)

  • Cho, Han-Wook
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.178-184
    • /
    • 1995
  • A new combined isotropic/kinematic and orthotropic hardening viscoplastic model is proposed which can account for not only differential orientations but also preferred orientations of grains in n metal at finite plastic deformations with an introduction of multiple spin (rate of rotation) concept within the general framework of the model, the effects of anisotropy and constitutive spins will be discussed in conjunction with a closed-form solution for simple shear in n rigid-plastic material, which will be used to simulate experimental data of Montheillet, et al. (1984) for fixed-end tortion tests at finite plastic deformations.

  • PDF

Seismic fragility assessment of self-centering RC frame structures considering maximum and residual deformations

  • Li, Lu-Xi;Li, Hong-Nan;Li, Chao
    • Structural Engineering and Mechanics
    • /
    • v.68 no.6
    • /
    • pp.677-689
    • /
    • 2018
  • Residual deformation is a crucial index that should be paid special attention in the performance-based seismic analyses of reinforced concrete (RC) structures. Owing to their superior re-centering capacity under earthquake excitations, the post-tensioned self-centering (PTSC) RC frames have been proposed and developed for engineering application during the past few decades. This paper presents a comprehensive assessment on the seismic fragility of a PTSC frame by simultaneously considering maximum and residual deformations. Bivariate limit states are defined according to the pushover analyses for maximum deformations and empirical judgments for residual deformations. Incremental Dynamic Analyses (IDA) are conducted to derive the probability of exceeding predefined limit states at specific ground motion intensities. Seismic performance of the PTSC frame is compared with that of a conventional monolithic RC frame. The results show that, taking a synthetical consideration of maximum and residual deformations, the PTSC frame surpasses the monolithic frame in resisting most damage states, but is more vulnerable to ground motions with large intensities.