• 제목/요약/키워드: large deformation dynamic analysis

검색결과 159건 처리시간 0.02초

강제 진동을 고려한 실린더 보어의 동적 변형 해석 (Dynamic Deformation Analysis of Cylinder Bore considering Forced Vibration)

  • 윤성호;조덕형
    • 한국자동차공학회논문집
    • /
    • 제10권5호
    • /
    • pp.174-181
    • /
    • 2002
  • Dynamic deformation of the cylinder bore during actual engine operation has an important effect on the combustion gas sealing, oil consumption, friction and so on. The dynamic analysis using the finite element method is performed to investigate the dynamic deformation of the cylinder bore subjected to forced vibration under excitation of the combustion gas pressure. However, this analysis requires large computer memory and tremendous solving time. The pseudo-static analysis can be an alternative to the dynamic analysis at the expense of accuracy. Dynamic analysis and static analysis results are presented for both closed-deck block and open-deck block that are respectively combined with the cylinder block, cylinder head, transmission, and oil pan.

Large deformation modeling of flexible manipulators to determine allowable load

  • Esfandiar, Habib;Korayem, Moharam H.;Haghpanahi, Mohammad
    • Structural Engineering and Mechanics
    • /
    • 제62권5호
    • /
    • pp.619-629
    • /
    • 2017
  • This paper focuses on the study of complete dynamic modeling and maximum dynamic load carrying capacity computation of N-flexible links and N-flexible joints mobile manipulator undergoing large deformation. Nonlinear dynamic analysis relies on the Timoshenko theory of beams. In order to model the system completely and precisely, structural and joint flexibility, nonlinear strain-displacement relationship, payload, and non-holonomic constraints will be considered to. A finite element solution method based on mixed method is applied to model the shear deformation. This procedure is considerably more involved than displacement based element and shear deformation can be readily included without inducing the shear locking in the element. Another goal of this paper is to present a computational procedure for determination of the maximum dynamic load of geometrically nonlinear manipulators with structural and joint flexibility. An effective measure named as Moment-Height Stability (MHS) measure is applied to consider the dynamic stability of a wheeled mobile manipulator. Simulations are performed for mobile base manipulator with two flexible links and joints. The results represent that dynamic stability constraint is sensitive when calculating the maximum carrying load. Furthermore, by changing the trajectory of end effector, allowable load also changes. The effect of torsional spring parameter on the joint deformation is investigated in a parametric sensitivity study. The findings show that, by the increase of torsional stiffness, the behavior of system approaches to a system with rigid joints and allowable load of robot is also enhanced. A comparison is also made between the results obtained from small and large deformation models. Fluctuation range in obtained figures for angular displacement of links and end effector path is bigger for large deformation model. Experimental results are also provided to validate the theoretical model and these have good agreement with the simulated results.

정적 대변형을 받고 있는 점탄성 재료의 동적 물성치 규명 시험 (Testing for Identification of Dynamic Properties of Viscoelastic Material Subject to Large Static Deformation)

  • 이완술;이호정;조지현;김진성;윤성기;김광준
    • 한국소음진동공학회논문집
    • /
    • 제13권2호
    • /
    • pp.132-143
    • /
    • 2003
  • Viscoelastic components for vibration isolation or shock absorption in automobiles, machines and buildings are often subject to a high level of static deformation. From the dynamic design point of view, it is requisite to predict dynamic complex stiffness of viscoelastic components accurately and efficiently. To this end, a systematic procedure for complex modulus measurement of the viscoelastic material under large static deformation is often required in the industrial fields. In this paper, dynamic test conditions and procedures for the viscoelastic material under small oscillatory load superimposed on large static deformation are discussed. Various standard test methods are investigated in order to select an adequate test methodology. The influence of fixed boundary condition in the compression tests upon complex stiffness are investigated and an effective correction technique is proposed. Then the uniaxial tension and compression tests are performed and its results are compared with analysis results from conventional constitutive models.

Nonlinear large deformation dynamic analysis of electroactive polymer actuators

  • Moghadam, Amir Ali Amiri;Kouzani, Abbas;Zamani, Reza;Magniez, Kevin;Kaynak, Akif
    • Smart Structures and Systems
    • /
    • 제15권6호
    • /
    • pp.1601-1623
    • /
    • 2015
  • Electroactive polymers have attracted considerable attention in recent years due to their sensing and actuating properties which make them a material of choice for a wide range of applications including sensors, biomimetic robots, and biomedical micro devices. This paper presents an effective modeling strategy for nonlinear large deformation (small strains and moderate rotations) dynamic analysis of polymer actuators. Considering that the complicated electro-chemo-mechanical dynamics of these actuators is a drawback for their application in functional devices, establishing a mathematical model which can effectively predict the actuator's dynamic behavior can be of paramount importance. To effectively predict the actuator's dynamic behavior, a comprehensive mathematical model is proposed correlating the input voltage and the output bending displacement of polymer actuators. The proposed model, which is based on the rigid finite element (RFE) method, consists of two parts, namely electrical and mechanical models. The former is comprised of a ladder network of discrete resistive-capacitive components similar to the network used to model transmission lines, while the latter describes the actuator as a system of rigid links connected by spring-damping elements (sdes). Both electrical and mechanical components are validated through experimental results.

자동차용 고무부품에 대한 대변형 유한요소해석 (Large deformation finite element analysis for automotive rubber components)

  • 김헌영;최천;방원준;김재수
    • 오토저널
    • /
    • 제15권1호
    • /
    • pp.107-119
    • /
    • 1993
  • The objective of this study is to analyze the static and dynamic characteristics of automotive rubber components by computer simulation. Bush / rectangular type engine mounts and wind shield weather strip are analyzed by using the commercial code ABAQUS and the results are verified by experiments. Large deformation static response is analyzed in order to get the information about the deformation pattern and static stiffness of engine mounts, and about the seperation force of wind shield weather strip from body. The isothermal steady-state dynamic response of components which have been subjected to an initial static pre-load is analyzed for the dynamic stiffness of engine mount rubber components. There are good agreements between simulation and experiments. So it is possible to apply the computer simulation to the design of automotive rubber components.

  • PDF

복합재료 평판의 비선형 3차원 저속 충격 해석 (3-Dimensional Nonlinear Analysis of Low Velocity Impact On Composite Plates)

  • 김승조;지국현
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 춘계학술발표대회 논문집
    • /
    • pp.38-42
    • /
    • 2000
  • In this study, the low velocity impact behavior of the composite laminates has been described by using 3 dimensional nonlinear finite elements. To describe the geometric nonlinearity due to large deformation, the dynamic contact problem is formulated using the exterior penalty finite element method on the base of Total Lagrangian formulation. The incremental decomposition is introduced, and the converged solution is attained by Newton-Raphson Method. The Newmark's constant-acceleration time integration algorithm is used. To make verification of the finite element program developed in this study, the solution of the nonlinear static problem with occurrence of large deformation is compared with ABAQUS, and the solution of the static contact problem with indentation is compared with the Hertz solution. And, the solution of low velocity impact problem for isotropic material is verificated by comparison with that of LS-DYNA3D. Finally the contact force of impact response from the nonlinear analysis are compared with those from the linear analysis.

  • PDF

On the large plastic deformation of tubular beams under impact loading

  • Wang, B.
    • Structural Engineering and Mechanics
    • /
    • 제3권5호
    • /
    • pp.463-474
    • /
    • 1995
  • When a tubular cantilever beam is loaded by a dynamic force applied transversely at its tip, the strain hardening of the material tends to increase the load carrying capacity and local buckling and cross-sectional overlization occurring in the tube section tends to reduce the moment carrying capacity and results in structural softening. A theoretical model is presented in this paper to analyze the deformation of a tubular beam in a dynamic response mode. Based on a large deflection analysis, the hardening/softening M-${\kappa}$ relationship is introduced. The main interest is on the curvature development history and the deformed configuration of the beam.

전체운동을 하는 단순지지 유연 구조물의 동적해석 (Dynamic Analysis of Simply Supported Flexible Structures Undergoing Large Overall Motion)

  • 유홍희
    • 대한기계학회논문집
    • /
    • 제19권6호
    • /
    • pp.1363-1370
    • /
    • 1995
  • A nonlinear dynamic modeling method for simply supported structures undergoing large overall motion is suggested. The modeling method employs Rayleigh-Ritz mode technique and Von Karman nonlinear strain measures. Numerical study shows that the suggested modeling method provides qualitatively different results from those of the Classical Linear Cartesian modeling method. Especially, natural frequency variations and residual deformation due to membrane strain effects are observed in the numerical results obtained by the suggested modeling method.

Geometrically nonlinear dynamic analysis of FG graphene platelets-reinforced nanocomposite cylinder: MLPG method based on a modified nonlinear micromechanical model

  • Rad, Mohammad Hossein Ghadiri;Shahabian, Farzad;Hosseini, Seyed Mahmoud
    • Steel and Composite Structures
    • /
    • 제35권1호
    • /
    • pp.77-92
    • /
    • 2020
  • The present paper outlined a procedure for geometrically nonlinear dynamic analysis of functionally graded graphene platelets-reinforced (GPLR-FG) nanocomposite cylinder subjected to mechanical shock loading. The governing equation of motion for large deformation problems is derived using meshless local Petrov-Galerkin (MLPG) method based on total lagrangian approach. In the MLPG method, the radial point interpolation technique is employed to construct the shape functions. A micromechanical model based on the Halpin-Tsai model and rule of mixture is used for formulation the nonlinear functionally graded distribution of GPLs in polymer matrix of composites. Energy dissipation in analyses of the structure responding to dynamic loads is considered using the Rayleigh damping. The Newmark-Newton/Raphson method which is an incremental-iterative approach is implemented to solve the nonlinear dynamic equations. The results of the proposed method for homogenous material are compared with the finite element ones. A very good agreement is achieved between the MLPG and FEM with very fine meshing. In addition, the results have demonstrated that the MLPG method is more effective method compared with the FEM for very large deformation problems due to avoiding mesh distortion issues. Finally, the effect of GPLs distribution on strength, stiffness and dynamic characteristics of the cylinder are discussed in details. The obtained results show that the distribution of GPLs changed the mechanical properties, so a classification of different types and volume fraction exponent is established. Indeed by comparing the obtained results, the best compromise of nanocomposite cylinder is determined in terms of mechanical and dynamic properties for different load patterns. All these applications have shown that the present MLPG method is very effective for geometrically nonlinear analyses of GPLR-FG nanocomposite cylinder because of vanishing mesh distortion issue in large deformation problems. In addition, since in proposed method the distributed nodes are used for discretization the problem domain (rather than the meshing), modeling the functionally graded media yields to more accurate results.

대변형을 하는 고무 부품의 동적 거동 (A Dynamic Behavior of Rubber Component with Large Deformation)

  • 조재웅
    • 한국산학기술학회논문지
    • /
    • 제6권6호
    • /
    • pp.536-541
    • /
    • 2005
  • 고무 성분에 대한 대변형 및 강성은 비선형 및 대변형의 해석 결과로 나타낼 수 있다. 또한 고무는 Mooney-Rivlin의 모델로서 적용되고 고무들 사이에서 자기 접촉이 성립되어지는데 강성체 및 고무 사이에서는 마찰력이 있게 된다. 본 연구에서 사용된 비선형 시뮬레이션 해석은 여러 가지의 고무 성분들의 설계, 분석 그리고 개발에 널리 사용될 수 있다. 이러한 방법을 이용하면 새로운 고무 제품을 개발하는데 있어서 시간과 비용을 절감할 수 있을 것으로 보인다. 고무 성분들의 분석은 특이한 재료의 모델링과 비선형 유한 요소 해석을 요하는데 금속 부품들에 대하여 해석하는 프로그램들과는 완전히 다르다. 본 연구의 목적은 대변형 및 비선형의 고무 부품을 해석하는데 있다.

  • PDF